Vista normal Vista MARC Vista ISBD

Optical fiber telecommunications [recurso electrónico]. Volume B, Systems and networks / edited by Ivan Kaminow, Tingye Li, Alan E. Willner.

Colaborador(es): Kaminow, Ivan P, 1930- | Li, Tingye | Willner, Alan E.
Tipo de material: materialTypeLabelLibroSeries Optics and photonics: Editor: Oxford : Academic Press Inc., 2013Edición: 6th ed.Descripción: 1 online resource (1040 pages) : illustrations.Tipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780123969606 (electronic bk.); 0123969603 (electronic bk.).Tema(s): Optical fiber communication | Optical fiber communication -- Equipment and supplies | Fiber optics | Telecommunication systems -- ManagementGénero/Forma: Electronic books.Formatos físicos adicionales: Print version:: Sin títuloClasificación CDD: 621.3/8275 Recursos en línea: Libro electrónico ScienceDirect
Contenidos:
Machine generated contents note: ch. 1 Fiber Nonlinearity and Capacity: Single-Mode and Multimode Fibers / Roland Ryf -- 1.1.Introduction -- 1.2.Network traffic and optical systems capacity -- 1.3.Information theory -- 1.3.1.Basic concepts -- 1.3.2.Link to optical communication -- 1.4.Single-mode fibers: single polarization -- 1.4.1.Stochastic nonlinear Schrodinger equation -- 1.4.2.Nonlinear capacity of standard single-mode fiber -- 1.4.3.Advanced single-mode fibers -- 1.4.4.Analytic formula of fiber capacity -- 1.5.Single-mode fibers: polarization-division multiplexing -- 1.5.1.Nonlinear propagation: stochastic Manakov equations -- 1.5.2.Capacity of PDM systems -- 1.6.Multicore and multimode fibers -- 1.6.1.Types of multicore and multimode fibers -- 1.6.2.Capacity scaling with the number of modes -- 1.6.3.Generalized Manakov equations for multimode fibers -- 1.6.4.Description of a few-mode fiber -- 1.6.5.Inter-modal cross-phase modulation -- 1.6.6.Inter-modal four-wave mixing -- 1.7.Conclusion -- References -- ch. 2 Commercial 100-Gbit/s Coherent Transmission Systems / Glenn A. Wellbrock -- 2.1.Introduction -- 2.2.Optical channel designs -- 2.3.100G channel-from wish to reality -- 2.4.Introduction of 100g channels to service provider networks -- 2.5.Impact of commercial 100g system to transport network -- 2.6.Outlook beyond commercial 100g systems -- 2.7.Summary -- References -- ch. 3 Advances in Tb/s Superchannels / Xiang Liu -- 3.1.Introduction -- 3.2.Superchannel principle -- 3.3.Modulation -- 3.4.Multiplexing -- 3.4.1.Overview of multiplexing schemes -- 3.4.2.Seamless multiplexing -- 3.4.3.Multiplexing with guard band -- 3.5.Detection -- 3.6.Superchannel transmission -- 3.6.1.Transmission based on single-carrier modulation and O-OFDM multiplexing -- 3.6.2.Transmission based on OFDM modulation and O-OFDM multiplexing -- 3.6.3.Transmission based on Nyquist-WDM -- 3.6.4.Optimization of the spectral-efficiency-distance-product -- 3.7.Networking implications -- 3.8.Conclusion -- Glossary -- References -- ch. 4 Optical Satellite Communications / David Caplan -- 4.1.Introduction -- 4.1.1.Reduced diffraction -- 4.1.2.Available bandwidth -- 4.1.3.Commercially available technologies -- 4.1.4.Lasercom challenges -- 4.2.Lasercom link budgets -- 4.3.Laser beam propagation through the atmosphere -- 4.3.1.Atmospheric attenuation -- 4.3.2.Atmospheric radiance -- 4.3.3.Atmospheric turbulence -- 4.3.4.Turbulence mitigation approaches -- 4.4.Optical transceivers for space applications -- 4.4.1.Overview of FSO modulation formats and sensitivities -- 4.4.2.Transmitter technologies -- 4.4.3.Receiver technologies and performance -- 4.5.Space terminal -- 4.5.1.Space environment -- 4.5.2.Pointing, acquisition, and tracking -- 4.5.3.Flight optomechanics assembly -- 4.6.Ground terminal -- 4.6.1.Ground terminal-telescope and optomechanics assembly -- 4.6.2.Ground terminal-uplink transmitter -- 4.6.3.Ground terminal-acquisition, pointing, and tracking assembly -- 4.7.List of acronyms -- References -- ch. 5 Digital Signal Processing (DSP) and Its Application in Optical Communication Systems / David S. Millar -- 5.1.Introduction -- 5.1.1.Maximizing capacity in optical transport networks -- 5.2.Digital signal processing and its functional blocks -- 5.2.1.Optical coherent receiver and digital signal processing functionality -- 5.3.Application of DBP-based DSP to optical fiber Transmission in the nonlinear regime -- 5.3.1.Nonlinearity compensation in optical communications -- 5.3.2.Single-channel optical transmission performance -- 5.3.3.Single-channel digital backpropagation -- 5.3.4.WDM transmission -- 5.3.5.Digital backpropagation of the central channel -- 5.3.6.Multi-channel digital backpropagation -- 5.4.Summary and future questions -- References -- ch. 6 Advanced Coding for Optical Communications / Ivan B. Djordjevic -- 6.1.Introduction -- 6.2.Linear block codes -- 6.2.1.Generator matrix -- 6.2.2.Parity-check matrix -- 6.2.3.Coding gain -- 6.3.Codes on graphs -- 6.3.1.Turbo codes -- 6.3.2.Turbo-product codes (TPCs) -- 6.3.3.Low-density parity-check (LDPC) codes -- 6.3.4.Quasi-cyclic (QC) binary LDPC code design -- 6.3.5.Decoding of binary LDPC codes and BER performance evaluation -- 6.3.6.Nonbinary LDPC codes -- 6.3.7.FPGA implementation of decoders for large-girth QC-LDPC codes -- 6.4.Coded modulation -- 6.4.1.Multilevel coding and block-interleaved coded modulation -- 6.4.2.Polarization-multiplexed coded-OFDM -- 6.4.3.Nonbinary LDPC-coded modulation -- 6.4.4.Multidimensional coded modulation -- 6.5.Adaptive nonbinary LDPC-coded modulation -- 6.6.LDPC-coded turbo equalization -- 6.6.1.MAP detection -- 6.6.2.Multilevel turbo equalization -- 6.6.3.Performance of LDPC-coded turbo equalizer -- 6.6.4.Multilevel turbo equalizer robust to I/Q-imbalance and polarization offset -- 6.6.5.Multilevel turbo equalization with digital backpropagation -- 6.7.Information capacity of fiber-optics communication systems -- 6.7.1.Channel capacity of channels with memory -- 6.7.2.Calculation of information capacity of multilevel modulation schemes by forward recursion of BCJR algorithm -- 6.7.3.Information capacity of systems with coherent detection -- 6.8.Concluding remarks -- References -- ch. 7 Extremely Higher-Order Modulation Formats / Keisuke Kasai -- 7.1.Introduction -- 7.2.Spectral efficiency of QAM signal and shannon limit -- 7.3.Fundamental configuration and key components of QAM coherent optical transmission -- 7.3.1.Coherent light source -- 7.3.2.Optical IQ modulator -- 7.3.3.Coherent optical receiver and optical PLL -- 7.3.4.Digital demodulator and equalizer -- 7.4.Higher-order QAM transmission experiments -- 7.4.1.1024 QAM (60Gbit/s) single-carrier transmission -- 7.4.2.256 QAM-OFDM coherent transmission -- 7.4.3.Ultrahigh-speed OTDM-RZ/QAM transmission -- 7.5.Conclusion -- References -- ch. 8 Multicarrier Optical Transmission / William Shieh -- 8.1.Historical perspective of optical multicarrier transmission -- 8.1.1.Variations of optical multicarrier transmission methods -- 8.1.2.Research trends in optical multicarrier transmission -- 8.2.OFDM basics -- 8.2.1.Mathematical formulation of an OFDM signal -- 8.2.2.Discrete Fourier transform implementation of OFDM -- 8.2.3.Cyclic prefix for OFDM -- 8.2.4.Spectral efficiency for optical OFDM -- 8.3.Optical multicarrier systems based on electronic FFT -- 8.3.1.Coherent optical OFDM -- 8.3.2.Direct-detection optical OFDM -- 8.4.Optical multicarrier systems based on optical multiplexing -- 8.4.1.All-optical OFDM -- 8.4.2.Optical superchannel -- 8.4.3.Optical frequency division multiplexing -- 8.5.Nonlinearity in optical multicarrier transmission -- 8.5.1.High spectral-efficiency long-haul transmission -- 8.5.2.Optimal symbol rate in multicarrier systems -- 8.5.3.The information spectral limit in multicarrier systems -- 8.5.4.Nonlinearity mitigation for multicarrier systems -- 8.6.Applications of optical multicarrier transmissions -- 8.6.1.Long-reach and high-capacity systems -- 8.6.2.Optical access networks -- 8.6.3.Indoor and free-space multicarrier optical systems -- 8.7.Future research directions for multicarrier transmission -- References -- ch. 9 Optical OFDM and Nyquist Multiplexing / Wolfgang Freude -- 9.1.Introduction -- 9.2.Orthogonal shaping of temporal or spectral functions for efficient multiplexing -- 9.2.1.Definitions of orthogonality -- 9.2.2.Transmitter -- 9.2.3.Channel -- 9.2.4.Receiver -- 9.2.5.Avoiding inter-channel and inter-symbol interference -- 9.2.6.Pulse-shaping in the digital, electrical, and optical domain-a comparison -- 9.3.Optical Fourier transform based multiplexing -- 9.3.1.Electronic Fourier transform processing -- 9.3.2.The optical Fourier transform receiver -- 9.3.3.The optical Fourier transform transmitter -- 9.3.4.Optical Fourier transform processors -- 9.4.Encoding and decoding of OFDM signals -- 9.4.1.OFDM transmitter -- 9.4.2.OFDM receivers -- 9.4.3.OFDM transmission-an example of an all-optical implementation -- 9.5.Conclusion -- 9.6.Mathematical definitions and relations -- References -- ch. 10 Spatial Multiplexing Using Multiple-Input Multiple-Output Signal Processing / Sebastian Randel -- 10.1.Optical network capacity scaling through spatial multiplexing -- 10.1.1.The capacity crunch -- 10.1.2.Spatial multiplexing -- 10.1.3.Crosstalk management in SDM systems -- 10.2.Coherent MIMO-SDM with selective mode excitation -- 10.2.1.Signal orthogonality -- 10.2.2.MIMO system capacities and outage -- 10.3.MIMO DSP -- 10.3.1.General receiver DSP functional blocks -- 10.3.2.Channel estimation -- 10.3.3.Adaptive MIMO equalization -- 10.3.4.MIMO equalizer complexity -- 10.4.Mode multiplexing components -- 10.4.1.Mode multiplexer characteristics -- 10.4.2.Mode multiplexer design -- 10.4.3.Mode couplers for few-mode fibers -- 10.4.4.Mode couplers for multi-core fibers -- 10.5.Optical amplifiers for coupled-mode transmission -- 10.5.1.Optical amplifiers for few-mode fibers -- 10.5.2.Optical amplifier for multi-core fibers -- 10.6.Systems experiments -- 10.6.1.Single-span MIMO-SDM transmission over few-mode fiber -- 10.6.2.Multi-span MIMO-SDM transmission over few-mode fiber -- 10.6.3.MIMO-SDM in coupled multi-core fiber -- 10.7.Conclusion -- References -- ch. 11 Mode Coupling and its Impact on Spatially Multiplexed Systems / Joseph M. Kahn -- 11.1.Introduction -- 11.2.Modes and mode coupling in optical fibers -- 11.2.1.Modes in optical fibers -- 11.2.2.Mode coupling and its origins -- 11.2.3.Mode coupling models -- 11.3.Modal dispersion -- 11.3.1.Coupled modal dispersion -- 11.3.2.Group delay statistics in strong-coupling regime -- 11.3.3.Statistics of group delay spread -- 11.4.Mode-dependent loss and gain -- 11.4.1.Statistics of strongly coupled mode-dependent gains and losses -- 11.4.2.Model for mode-dependent loss and gain -- 11.4.3.Properties of the product of random matrices -- 11.4.4.Numerical simulations of mode-dependent loss and gain --
Note continued: 11.4.5.Spatial whiteness of received noise -- 11.4.6.Frequency-dependent mode-dependent loss and gain -- 11.5.Direct-detection mode-division multiplexing -- 11.6.Coherent mode-division multiplexing -- 11.6.1.Average channel capacity of narrowband systems -- 11.6.2.Wideband systems and frequency diversity -- 11.6.3.Signal processing for mode-division-multiplexing -- 11.7.Conclusion -- References -- ch. 12 Multimode Communications Using Orbital Angular Momentum / Alan E. Willner -- 12.1.Perspective on orbital angular momentum (OAM) multiplexing in communication systems -- 12.2.Fundamentals of OAM -- 12.3.Techniques for OAM generation, multiplexing/demultiplexing, and detection -- 12.3.1.OAM generation -- 12.3.2.OAM multiplexing/demultiplexing -- 12.3.3.OAM detection -- 12.4.Free-space communication links using OAM multiplexing -- 12.4.1.OAM+WDM link -- 12.4.2.OAM+PDM link -- 12.4.3.Scalability of OAM+PDM in spatial domain -- 12.5.Fiber-based transmission links -- 12.5.1.Fiber design -- 12.5.2.Coupling and controlling OAM in fibers -- 12.5.3.Long-length propagation of OAM in fiber -- 12.5.4.Fiber-based data transmission using OAM -- 12.6.Optical signal processing using OAM -- 12.6.1.Data exchange -- 12.6.2.Add/drop -- 12.6.3.Multicasting -- 12.6.4.Monitoring and compensation -- 12.7.Future challenges of OAM communications -- References -- ch. 13 Transmission Systems Using Multicore Fibers / Shoichiro Matsuo -- 13.1.Expectations of multicore fibers -- 13.2.MCF design -- 13.2.1.Types of MCFs -- 13.2.2.Inter-core crosstalk in homogeneous uncoupled MCFs -- 13.2.3.Inter-core crosstalk in heterogeneous uncoupled MCFs -- 13.3.Methods of coupling to MCFs -- 13.3.1.Lens coupling systems -- 13.3.2.Fiber-based systems and waveguide-based systems -- 13.3.3.Splicing techniques -- 13.4.Transmission experiments with uncoupled cores -- 13.4.1.Early demonstrations -- 13.4.2.Scalability of core number -- 13.4.3.1-R repeated demonstrations -- 13.5.Laguerre-Gaussian mode division multiplexing transmission in MCFs -- References -- ch. 14 Elastic Optical Networking / Masahiko Jinno -- 14.1.Introduction -- 14.1.1.The only constant in the future network is change -- 14.1.2.Why "business as usual" is not an option for DWDM -- 14.2.Enabling technologies -- 14.2.1.Flexible spectrum ROADM -- 14.2.2.Bitrate variable transceiver -- 14.2.3.The extended role of network control systems -- 14.2.4.EON trials and other proof points -- 14.3.The EON vision and some new concepts -- 14.3.1.Flexible choice of EOP parameters -- 14.3.2.Sliceable transceiver -- 14.3.3.Flexible client interconnect -- 14.3.4.Spectrum allocation and reallocation -- 14.3.5.Managing a connection per demand instead of managing wavelength -- 14.3.6.Adaptive restoration -- 14.4.A comparison of EON and fixed DWDM -- 14.4.1.A point-to-point comparison -- 14.4.2.A network level comparison -- 14.4.3.A comparison that includes the client network -- 14.5.Standards progress -- 14.5.1.DWDM network architecture -- 14.5.2.OTN mapping and multiplexing -- 14.5.3.Control plane: ASON, WSON, and GMPLS -- 14.5.4.Standardizing on flexible spectrum -- 14.6.Summary -- References -- ch. 15 ROADM-Node Architectures for Reconfigurable Photonic Networks / Paparao Palacharla -- Summary -- 15.1.Introduction -- 15.2.The ROADM node -- 15.2.1.Features-from necessities to luxuries -- 15.2.2.Evolution of the switching core -- 15.2.3.The mux/demux section of the ROADM node -- 15.2.4.Client-side switching -- 15.2.5.Flexible transponders -- 15.3.Network applications: Studies and demonstrations -- 15.3.1.CN-ROADMs and CNC-ROADMs in dynamic optical networks -- 15.3.2.Predeployment of regenerators for faster provisioning and lower MTTR -- 15.3.3.Wavelength grooming and traffic re-routing -- 15.3.4.Automated wavelength restoration -- 15.3.5.Bandwidth on demand -- 15.4.Two compatible visions of the future -- 15.4.1.Vision 1: highly dynamic network -- 15.4.2.Vision 2: space-division multiplexed systems -- 15.5.Conclusions -- References -- ch. 16 Convergence of IP and Optical Networking / Cesar Santivanez -- 16.1.Introduction -- 16.2.Motivation -- 16.2.1.Network services -- 16.2.2.Network architectures -- 16.2.3.Network technologies -- 16.3.Background -- 16.3.1.Network stack -- 16.3.2.Management, control, and data planes -- 16.3.3.Control plane functions -- 16.3.4.Traffic management -- 16.3.5.Recovery -- 16.3.6.Multi-domain -- 16.4.Standards -- 16.5.Next-generation control and management -- 16.5.1.Drivers -- 16.5.2.Novel framework -- 16.5.3.Research extensions: highly heterogeneous networks -- References -- ch. 17 Energy-Efficient Telecommunications / Rodney S. Tucker -- 17.1.Introduction -- 17.2.Energy use in commercial optical communication systems -- 17.2.1.Long reach and core transmission systems -- 17.2.2.Access networks -- 17.2.3.Switching and routing equipments -- 17.2.4.Overhead energy and common equipment constraints -- 17.3.Energy in optical communication systems -- 17.4.Transmission and switching energy models -- 17.4.1.Transmission system energy model -- 17.4.2.Lower bound on energy consumption of optically amplified transport -- 17.4.3.Energy consumption in optical transmitters and receivers -- 17.4.4.Transmission system lower bounds -- 17.5.Network Energy Models -- 17.5.1.Network energy model -- 17.5.2.Switching devices and fabrics -- 17.5.3.Switching sub-system energy -- 17.5.4.End-to-end network energy models -- 17.5.5.Comparison of energy projections with network-based data -- 17.6.Conclusion -- References -- ch. 18 Advancements in Metro Regional and Core Transport Network Architectures for the Next-Generation Internet / Loukas Paraschis -- 18.1.Introduction -- 18.2.Network architecture evolution -- 18.3.Transport technology innovations -- 18.3.1.IP/MPLS transport -- 18.3.2.100 Gb/s interconnections and coherent DWDM transmission -- 18.3.3.Optical transport networking (ITU G.709 standard) -- 18.3.4.Fully flexible DWDM add-drop multiplexing and switching -- 18.3.5.WSON and GMPLS control-plane advancements -- 18.4.The network value of photonics technology innovation -- 18.5.The network value of optical transport innovation -- 18.6.Outlook -- 18.7.Summary -- References -- ch. 19 Novel Architectures for Streaming/Routing in Optical Networks / Vincent W.S. Chan -- 19.1.Introduction and historical perspectives on connection and connectionless oriented optical transports -- 19.2.Essence of the major types of optical transports: optical packet switching (OPS), optical burst switching (OBS), and optical flow switching (OFS) -- 19.2.1.A brief history of OFS -- 19.3.Network architecture description and layering -- 19.3.1.The need for new architecture constructs for optical networks -- 19.3.2.OFS architectural principles -- 19.4.Definition of network "capacity" and evaluation of achievable network capacity regions of different types of optical transports -- 19.5.Physical topology of fiber plant and optical switching functions at nodes and the effects of transmission impairments and session dynamics on network architecture -- 19.6.Network management and control functions and scalable architectures -- 19.7.Media access control (MAC) protocol and implications on routing protocol efficiency and scalability -- 19.8.Transport layer protocol for new optical transports -- 19.9.Cost, power consumption throughput, and delay performance -- 19.10.Summary -- References -- ch. 20 Recent Advances in High-Frequency (> 10GHz) Microwave Photonic Links / Edward I. Ackerman -- 20.1.Introduction -- 20.2.Photonic links for receive-only applications -- 20.2.1.Effect of modulator bias point -- 20.2.2.Effect of balanced photodetection -- 20.3.Photonic links for transmit and receive applications -- 20.3.1.Broad bandwidth TIPRx -- 20.3.2.High frequency TIPRx -- 20.4.Summary -- References -- ch. 21 Advances in 1-100GHz Microwave Photonics: All-Band Optical Wireless Access Networks Using Radio Over Fiber Technologies / Shu-Hao Fan -- 21.1.Introduction -- 21.2.Optical RF wave generation -- 21.2.1.Overview of optical RF signal generation -- 21.2.2.Types of optical RF waves -- 21.2.3.ODSB millimeter wave -- 21.2.4.OSSB+C millimeter wave -- 21.2.5.OCS millimeter wave -- 21.2.6.Conversion efficiency -- 21.3.Converged ROF transmission system -- 21.3.1.Generation and transmission of multiple RF bands -- 21.3.2.Baseband, microwave, and millimeter wave -- 21.3.3.Millimeter wave with wireless services in low RF regions -- 21.3.4.60-GHz sub-bands generation -- 21.4.Conclusions -- References -- ch. 22 PONs: State of the Art and Standardized / Frank Effenberger -- 22.1.Introduction to PON -- 22.2.TDM PONs: Basic design and issues -- 22.2.1.Brief review of TDM PON standards -- 22.2.2.Generation 4: 10Gbit/s PONs -- 22.2.3.40G serial -- 22.3.Video overlay -- 22.4.WDM PONs: common elements -- 22.4.1.Injection locked -- 22.4.2.Wavelength reuse -- 22.4.3.Self-seeded -- 22.4.4.Tunable -- 22.4.5.Coherent -- 22.5.FDM-PONs: Motivation -- 22.5.1.Pure FDM -- 22.5.2.Incoherent OFDM -- 22.5.3.Optical OFDM -- 22.6.Hybrid TWDM-PON -- 22.7.Summary and outlook -- References -- ch. 23 Wavelength-Division-Multiplexed Passive Optical Networks (WDM PONs) / Y. Takushima -- 23.1.Introduction -- 23.2.Light sources for WDM PON -- 23.2.1.Distributed feedback (DFB) laser -- 23.2.2.Tunable laser -- 23.2.3.Spectrum-sliced incoherent light source -- 23.2.4.Reflective light sources -- 23.2.5.Re-modulation scheme for upstream transmission -- 23.3.WDM PON architectures -- 23.3.1.WDM PON in wavelength-routing architecture -- 23.3.2.WDM PON in broadcast-and-select architecture -- 23.3.3.WDM PON in ring/bus architectures -- 23.4.Long-reach WDM PONs -- 23.4.1.Fundamental limitations on the reach of WDM PON -- 23.4.2.Long-reach WDM PON using remote optical amplifiers -- 23.4.3.Long-reach WDM PON using coherent detection technique -- 23.5.Next-generation high-speed WDM PON -- 23.5.1.Limitation on the operating speed of colorless light sources --
Note continued: 23.5.2.Modulation bandwidth of RSOA and its equalization technique -- 23.5.3.Utilization of advanced modulation formats -- 23.5.4.Ultrahigh-speed WDM PON -- 23.6.Fault monitoring, localization and protection techniques -- 23.6.1.Fault localization techniques for WDM PON -- 23.6.2.Survivable WDM PONs -- 23.7.Summary -- Appendix: Acronyms -- References -- ch. 24 FTTX Worldwide Deployment / Zisen Zhao -- 24.1.Introduction -- 24.2.Background of fiber architectures -- 24.2.1.Passive optical networks (PONs) -- 24.2.2.Point to point -- 24.3.Technology variants -- 24.3.1.B-PON -- 24.3.2.GE-PON -- 22.3.3.G-PON -- 24.3.4.Next-generation PON technologies -- 24.3.5.Coexistence and wavelength plan -- 24.3.6.Extended reach systems -- 24.3.7.CO consolidation -- 24.4.Status and FTTX deployments around the world -- 24.4.1.FTTX in Asia -- 24.4.2.FTTX in Europe and Africa -- 24.4.3.FTTX in the Americas -- 24.5.What's Next? -- 24.6.Summary -- References -- ch. 25 Modern Undersea Transmission Technology / Georg Mohs -- 25.1.Introduction -- 25.1.1.Reach, latency and capacity -- 25.1.2.The capacity challenge -- 25.2.Coherent transmission technology in undersea systems -- 25.2.1.Introduction to coherent detection -- 25.2.2.Linear impairment compensation with coherent detection -- 25.2.3.Nonlinearity accumulation in dispersion uncompensated transmission -- 25.3.Increasing spectral efficiency by bandwidth constraint -- 25.3.1.Inter-symbol interference compensation by linear filters -- 25.3.2.Multi-symbol detection -- 25.4.Nyquist carrier spacing -- 25.4.1.Spectral shaping for single channel modulation formats -- 25.4.2.Orthogonal frequency division multiplexing (OFDM) -- 25.4.3.Super-channels -- 25.5.Increasing spectral efficiency by increasing the constellation size -- 25.5.1.Higher order modulation formats -- 25.5.2.Receiver sensitivity -- 25.5.3.Coded modulation -- 25.6.Future trends -- 25.6.1.Nonlinearitycompensation -- 25.6.2.Multi-core and multi-mode fiber -- 25.7.Summary -- List of acronyms -- References.
Resumen: Optical Fiber Telecommunications VI (A & B) is the sixth in a series that has chronicled the progress in the R & D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R & D engineers and managers, optical systems implementers, university researchers and students, network operators, and investors. Volume A is devoted to components and subsystems, including photonic integrated circuits, multicore and few-mode fibers, photonic crystals, silicon photonics, signal processing, and optical interconnections. Volume B is devoted to systems and networks, including advanced modulation formats, coherent detection, Tb/s channels, space-division multiplexing, reconfigurable networks, broadband access, undersea cable, satellite communications, and microwave photonics. All the latest technologies and techniques for developing future components and systemsEdited by two winners of the highly prestigious OSA/IEEE John Tyndal award and a President of IEEE's Lasers & Electro-Optics Society (7,000 members)Written by leading experts in the field, it is the most authoritative and comprehensive reference on optical engineering the market.
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos TK5103.592 .F52 O67 2013 EB (Navegar estantería) 1 No para préstamo 380374-2001

Optical Fiber Telecommunications VI (A & B) is the sixth in a series that has chronicled the progress in the R & D of lightwave communications since the early 1970s. Written by active authorities from academia and industry, this edition brings a fresh look to many essential topics, including devices, subsystems, systems and networks. A central theme is the enabling of high-bandwidth communications in a cost-effective manner for the development of customer applications. These volumes are an ideal reference for R & D engineers and managers, optical systems implementers, university researchers and students, network operators, and investors. Volume A is devoted to components and subsystems, including photonic integrated circuits, multicore and few-mode fibers, photonic crystals, silicon photonics, signal processing, and optical interconnections. Volume B is devoted to systems and networks, including advanced modulation formats, coherent detection, Tb/s channels, space-division multiplexing, reconfigurable networks, broadband access, undersea cable, satellite communications, and microwave photonics. All the latest technologies and techniques for developing future components and systemsEdited by two winners of the highly prestigious OSA/IEEE John Tyndal award and a President of IEEE's Lasers & Electro-Optics Society (7,000 members)Written by leading experts in the field, it is the most authoritative and comprehensive reference on optical engineering the market.

Description based on print version record.

Machine generated contents note: ch. 1 Fiber Nonlinearity and Capacity: Single-Mode and Multimode Fibers / Roland Ryf -- 1.1.Introduction -- 1.2.Network traffic and optical systems capacity -- 1.3.Information theory -- 1.3.1.Basic concepts -- 1.3.2.Link to optical communication -- 1.4.Single-mode fibers: single polarization -- 1.4.1.Stochastic nonlinear Schrodinger equation -- 1.4.2.Nonlinear capacity of standard single-mode fiber -- 1.4.3.Advanced single-mode fibers -- 1.4.4.Analytic formula of fiber capacity -- 1.5.Single-mode fibers: polarization-division multiplexing -- 1.5.1.Nonlinear propagation: stochastic Manakov equations -- 1.5.2.Capacity of PDM systems -- 1.6.Multicore and multimode fibers -- 1.6.1.Types of multicore and multimode fibers -- 1.6.2.Capacity scaling with the number of modes -- 1.6.3.Generalized Manakov equations for multimode fibers -- 1.6.4.Description of a few-mode fiber -- 1.6.5.Inter-modal cross-phase modulation -- 1.6.6.Inter-modal four-wave mixing -- 1.7.Conclusion -- References -- ch. 2 Commercial 100-Gbit/s Coherent Transmission Systems / Glenn A. Wellbrock -- 2.1.Introduction -- 2.2.Optical channel designs -- 2.3.100G channel-from wish to reality -- 2.4.Introduction of 100g channels to service provider networks -- 2.5.Impact of commercial 100g system to transport network -- 2.6.Outlook beyond commercial 100g systems -- 2.7.Summary -- References -- ch. 3 Advances in Tb/s Superchannels / Xiang Liu -- 3.1.Introduction -- 3.2.Superchannel principle -- 3.3.Modulation -- 3.4.Multiplexing -- 3.4.1.Overview of multiplexing schemes -- 3.4.2.Seamless multiplexing -- 3.4.3.Multiplexing with guard band -- 3.5.Detection -- 3.6.Superchannel transmission -- 3.6.1.Transmission based on single-carrier modulation and O-OFDM multiplexing -- 3.6.2.Transmission based on OFDM modulation and O-OFDM multiplexing -- 3.6.3.Transmission based on Nyquist-WDM -- 3.6.4.Optimization of the spectral-efficiency-distance-product -- 3.7.Networking implications -- 3.8.Conclusion -- Glossary -- References -- ch. 4 Optical Satellite Communications / David Caplan -- 4.1.Introduction -- 4.1.1.Reduced diffraction -- 4.1.2.Available bandwidth -- 4.1.3.Commercially available technologies -- 4.1.4.Lasercom challenges -- 4.2.Lasercom link budgets -- 4.3.Laser beam propagation through the atmosphere -- 4.3.1.Atmospheric attenuation -- 4.3.2.Atmospheric radiance -- 4.3.3.Atmospheric turbulence -- 4.3.4.Turbulence mitigation approaches -- 4.4.Optical transceivers for space applications -- 4.4.1.Overview of FSO modulation formats and sensitivities -- 4.4.2.Transmitter technologies -- 4.4.3.Receiver technologies and performance -- 4.5.Space terminal -- 4.5.1.Space environment -- 4.5.2.Pointing, acquisition, and tracking -- 4.5.3.Flight optomechanics assembly -- 4.6.Ground terminal -- 4.6.1.Ground terminal-telescope and optomechanics assembly -- 4.6.2.Ground terminal-uplink transmitter -- 4.6.3.Ground terminal-acquisition, pointing, and tracking assembly -- 4.7.List of acronyms -- References -- ch. 5 Digital Signal Processing (DSP) and Its Application in Optical Communication Systems / David S. Millar -- 5.1.Introduction -- 5.1.1.Maximizing capacity in optical transport networks -- 5.2.Digital signal processing and its functional blocks -- 5.2.1.Optical coherent receiver and digital signal processing functionality -- 5.3.Application of DBP-based DSP to optical fiber Transmission in the nonlinear regime -- 5.3.1.Nonlinearity compensation in optical communications -- 5.3.2.Single-channel optical transmission performance -- 5.3.3.Single-channel digital backpropagation -- 5.3.4.WDM transmission -- 5.3.5.Digital backpropagation of the central channel -- 5.3.6.Multi-channel digital backpropagation -- 5.4.Summary and future questions -- References -- ch. 6 Advanced Coding for Optical Communications / Ivan B. Djordjevic -- 6.1.Introduction -- 6.2.Linear block codes -- 6.2.1.Generator matrix -- 6.2.2.Parity-check matrix -- 6.2.3.Coding gain -- 6.3.Codes on graphs -- 6.3.1.Turbo codes -- 6.3.2.Turbo-product codes (TPCs) -- 6.3.3.Low-density parity-check (LDPC) codes -- 6.3.4.Quasi-cyclic (QC) binary LDPC code design -- 6.3.5.Decoding of binary LDPC codes and BER performance evaluation -- 6.3.6.Nonbinary LDPC codes -- 6.3.7.FPGA implementation of decoders for large-girth QC-LDPC codes -- 6.4.Coded modulation -- 6.4.1.Multilevel coding and block-interleaved coded modulation -- 6.4.2.Polarization-multiplexed coded-OFDM -- 6.4.3.Nonbinary LDPC-coded modulation -- 6.4.4.Multidimensional coded modulation -- 6.5.Adaptive nonbinary LDPC-coded modulation -- 6.6.LDPC-coded turbo equalization -- 6.6.1.MAP detection -- 6.6.2.Multilevel turbo equalization -- 6.6.3.Performance of LDPC-coded turbo equalizer -- 6.6.4.Multilevel turbo equalizer robust to I/Q-imbalance and polarization offset -- 6.6.5.Multilevel turbo equalization with digital backpropagation -- 6.7.Information capacity of fiber-optics communication systems -- 6.7.1.Channel capacity of channels with memory -- 6.7.2.Calculation of information capacity of multilevel modulation schemes by forward recursion of BCJR algorithm -- 6.7.3.Information capacity of systems with coherent detection -- 6.8.Concluding remarks -- References -- ch. 7 Extremely Higher-Order Modulation Formats / Keisuke Kasai -- 7.1.Introduction -- 7.2.Spectral efficiency of QAM signal and shannon limit -- 7.3.Fundamental configuration and key components of QAM coherent optical transmission -- 7.3.1.Coherent light source -- 7.3.2.Optical IQ modulator -- 7.3.3.Coherent optical receiver and optical PLL -- 7.3.4.Digital demodulator and equalizer -- 7.4.Higher-order QAM transmission experiments -- 7.4.1.1024 QAM (60Gbit/s) single-carrier transmission -- 7.4.2.256 QAM-OFDM coherent transmission -- 7.4.3.Ultrahigh-speed OTDM-RZ/QAM transmission -- 7.5.Conclusion -- References -- ch. 8 Multicarrier Optical Transmission / William Shieh -- 8.1.Historical perspective of optical multicarrier transmission -- 8.1.1.Variations of optical multicarrier transmission methods -- 8.1.2.Research trends in optical multicarrier transmission -- 8.2.OFDM basics -- 8.2.1.Mathematical formulation of an OFDM signal -- 8.2.2.Discrete Fourier transform implementation of OFDM -- 8.2.3.Cyclic prefix for OFDM -- 8.2.4.Spectral efficiency for optical OFDM -- 8.3.Optical multicarrier systems based on electronic FFT -- 8.3.1.Coherent optical OFDM -- 8.3.2.Direct-detection optical OFDM -- 8.4.Optical multicarrier systems based on optical multiplexing -- 8.4.1.All-optical OFDM -- 8.4.2.Optical superchannel -- 8.4.3.Optical frequency division multiplexing -- 8.5.Nonlinearity in optical multicarrier transmission -- 8.5.1.High spectral-efficiency long-haul transmission -- 8.5.2.Optimal symbol rate in multicarrier systems -- 8.5.3.The information spectral limit in multicarrier systems -- 8.5.4.Nonlinearity mitigation for multicarrier systems -- 8.6.Applications of optical multicarrier transmissions -- 8.6.1.Long-reach and high-capacity systems -- 8.6.2.Optical access networks -- 8.6.3.Indoor and free-space multicarrier optical systems -- 8.7.Future research directions for multicarrier transmission -- References -- ch. 9 Optical OFDM and Nyquist Multiplexing / Wolfgang Freude -- 9.1.Introduction -- 9.2.Orthogonal shaping of temporal or spectral functions for efficient multiplexing -- 9.2.1.Definitions of orthogonality -- 9.2.2.Transmitter -- 9.2.3.Channel -- 9.2.4.Receiver -- 9.2.5.Avoiding inter-channel and inter-symbol interference -- 9.2.6.Pulse-shaping in the digital, electrical, and optical domain-a comparison -- 9.3.Optical Fourier transform based multiplexing -- 9.3.1.Electronic Fourier transform processing -- 9.3.2.The optical Fourier transform receiver -- 9.3.3.The optical Fourier transform transmitter -- 9.3.4.Optical Fourier transform processors -- 9.4.Encoding and decoding of OFDM signals -- 9.4.1.OFDM transmitter -- 9.4.2.OFDM receivers -- 9.4.3.OFDM transmission-an example of an all-optical implementation -- 9.5.Conclusion -- 9.6.Mathematical definitions and relations -- References -- ch. 10 Spatial Multiplexing Using Multiple-Input Multiple-Output Signal Processing / Sebastian Randel -- 10.1.Optical network capacity scaling through spatial multiplexing -- 10.1.1.The capacity crunch -- 10.1.2.Spatial multiplexing -- 10.1.3.Crosstalk management in SDM systems -- 10.2.Coherent MIMO-SDM with selective mode excitation -- 10.2.1.Signal orthogonality -- 10.2.2.MIMO system capacities and outage -- 10.3.MIMO DSP -- 10.3.1.General receiver DSP functional blocks -- 10.3.2.Channel estimation -- 10.3.3.Adaptive MIMO equalization -- 10.3.4.MIMO equalizer complexity -- 10.4.Mode multiplexing components -- 10.4.1.Mode multiplexer characteristics -- 10.4.2.Mode multiplexer design -- 10.4.3.Mode couplers for few-mode fibers -- 10.4.4.Mode couplers for multi-core fibers -- 10.5.Optical amplifiers for coupled-mode transmission -- 10.5.1.Optical amplifiers for few-mode fibers -- 10.5.2.Optical amplifier for multi-core fibers -- 10.6.Systems experiments -- 10.6.1.Single-span MIMO-SDM transmission over few-mode fiber -- 10.6.2.Multi-span MIMO-SDM transmission over few-mode fiber -- 10.6.3.MIMO-SDM in coupled multi-core fiber -- 10.7.Conclusion -- References -- ch. 11 Mode Coupling and its Impact on Spatially Multiplexed Systems / Joseph M. Kahn -- 11.1.Introduction -- 11.2.Modes and mode coupling in optical fibers -- 11.2.1.Modes in optical fibers -- 11.2.2.Mode coupling and its origins -- 11.2.3.Mode coupling models -- 11.3.Modal dispersion -- 11.3.1.Coupled modal dispersion -- 11.3.2.Group delay statistics in strong-coupling regime -- 11.3.3.Statistics of group delay spread -- 11.4.Mode-dependent loss and gain -- 11.4.1.Statistics of strongly coupled mode-dependent gains and losses -- 11.4.2.Model for mode-dependent loss and gain -- 11.4.3.Properties of the product of random matrices -- 11.4.4.Numerical simulations of mode-dependent loss and gain --

Note continued: 11.4.5.Spatial whiteness of received noise -- 11.4.6.Frequency-dependent mode-dependent loss and gain -- 11.5.Direct-detection mode-division multiplexing -- 11.6.Coherent mode-division multiplexing -- 11.6.1.Average channel capacity of narrowband systems -- 11.6.2.Wideband systems and frequency diversity -- 11.6.3.Signal processing for mode-division-multiplexing -- 11.7.Conclusion -- References -- ch. 12 Multimode Communications Using Orbital Angular Momentum / Alan E. Willner -- 12.1.Perspective on orbital angular momentum (OAM) multiplexing in communication systems -- 12.2.Fundamentals of OAM -- 12.3.Techniques for OAM generation, multiplexing/demultiplexing, and detection -- 12.3.1.OAM generation -- 12.3.2.OAM multiplexing/demultiplexing -- 12.3.3.OAM detection -- 12.4.Free-space communication links using OAM multiplexing -- 12.4.1.OAM+WDM link -- 12.4.2.OAM+PDM link -- 12.4.3.Scalability of OAM+PDM in spatial domain -- 12.5.Fiber-based transmission links -- 12.5.1.Fiber design -- 12.5.2.Coupling and controlling OAM in fibers -- 12.5.3.Long-length propagation of OAM in fiber -- 12.5.4.Fiber-based data transmission using OAM -- 12.6.Optical signal processing using OAM -- 12.6.1.Data exchange -- 12.6.2.Add/drop -- 12.6.3.Multicasting -- 12.6.4.Monitoring and compensation -- 12.7.Future challenges of OAM communications -- References -- ch. 13 Transmission Systems Using Multicore Fibers / Shoichiro Matsuo -- 13.1.Expectations of multicore fibers -- 13.2.MCF design -- 13.2.1.Types of MCFs -- 13.2.2.Inter-core crosstalk in homogeneous uncoupled MCFs -- 13.2.3.Inter-core crosstalk in heterogeneous uncoupled MCFs -- 13.3.Methods of coupling to MCFs -- 13.3.1.Lens coupling systems -- 13.3.2.Fiber-based systems and waveguide-based systems -- 13.3.3.Splicing techniques -- 13.4.Transmission experiments with uncoupled cores -- 13.4.1.Early demonstrations -- 13.4.2.Scalability of core number -- 13.4.3.1-R repeated demonstrations -- 13.5.Laguerre-Gaussian mode division multiplexing transmission in MCFs -- References -- ch. 14 Elastic Optical Networking / Masahiko Jinno -- 14.1.Introduction -- 14.1.1.The only constant in the future network is change -- 14.1.2.Why "business as usual" is not an option for DWDM -- 14.2.Enabling technologies -- 14.2.1.Flexible spectrum ROADM -- 14.2.2.Bitrate variable transceiver -- 14.2.3.The extended role of network control systems -- 14.2.4.EON trials and other proof points -- 14.3.The EON vision and some new concepts -- 14.3.1.Flexible choice of EOP parameters -- 14.3.2.Sliceable transceiver -- 14.3.3.Flexible client interconnect -- 14.3.4.Spectrum allocation and reallocation -- 14.3.5.Managing a connection per demand instead of managing wavelength -- 14.3.6.Adaptive restoration -- 14.4.A comparison of EON and fixed DWDM -- 14.4.1.A point-to-point comparison -- 14.4.2.A network level comparison -- 14.4.3.A comparison that includes the client network -- 14.5.Standards progress -- 14.5.1.DWDM network architecture -- 14.5.2.OTN mapping and multiplexing -- 14.5.3.Control plane: ASON, WSON, and GMPLS -- 14.5.4.Standardizing on flexible spectrum -- 14.6.Summary -- References -- ch. 15 ROADM-Node Architectures for Reconfigurable Photonic Networks / Paparao Palacharla -- Summary -- 15.1.Introduction -- 15.2.The ROADM node -- 15.2.1.Features-from necessities to luxuries -- 15.2.2.Evolution of the switching core -- 15.2.3.The mux/demux section of the ROADM node -- 15.2.4.Client-side switching -- 15.2.5.Flexible transponders -- 15.3.Network applications: Studies and demonstrations -- 15.3.1.CN-ROADMs and CNC-ROADMs in dynamic optical networks -- 15.3.2.Predeployment of regenerators for faster provisioning and lower MTTR -- 15.3.3.Wavelength grooming and traffic re-routing -- 15.3.4.Automated wavelength restoration -- 15.3.5.Bandwidth on demand -- 15.4.Two compatible visions of the future -- 15.4.1.Vision 1: highly dynamic network -- 15.4.2.Vision 2: space-division multiplexed systems -- 15.5.Conclusions -- References -- ch. 16 Convergence of IP and Optical Networking / Cesar Santivanez -- 16.1.Introduction -- 16.2.Motivation -- 16.2.1.Network services -- 16.2.2.Network architectures -- 16.2.3.Network technologies -- 16.3.Background -- 16.3.1.Network stack -- 16.3.2.Management, control, and data planes -- 16.3.3.Control plane functions -- 16.3.4.Traffic management -- 16.3.5.Recovery -- 16.3.6.Multi-domain -- 16.4.Standards -- 16.5.Next-generation control and management -- 16.5.1.Drivers -- 16.5.2.Novel framework -- 16.5.3.Research extensions: highly heterogeneous networks -- References -- ch. 17 Energy-Efficient Telecommunications / Rodney S. Tucker -- 17.1.Introduction -- 17.2.Energy use in commercial optical communication systems -- 17.2.1.Long reach and core transmission systems -- 17.2.2.Access networks -- 17.2.3.Switching and routing equipments -- 17.2.4.Overhead energy and common equipment constraints -- 17.3.Energy in optical communication systems -- 17.4.Transmission and switching energy models -- 17.4.1.Transmission system energy model -- 17.4.2.Lower bound on energy consumption of optically amplified transport -- 17.4.3.Energy consumption in optical transmitters and receivers -- 17.4.4.Transmission system lower bounds -- 17.5.Network Energy Models -- 17.5.1.Network energy model -- 17.5.2.Switching devices and fabrics -- 17.5.3.Switching sub-system energy -- 17.5.4.End-to-end network energy models -- 17.5.5.Comparison of energy projections with network-based data -- 17.6.Conclusion -- References -- ch. 18 Advancements in Metro Regional and Core Transport Network Architectures for the Next-Generation Internet / Loukas Paraschis -- 18.1.Introduction -- 18.2.Network architecture evolution -- 18.3.Transport technology innovations -- 18.3.1.IP/MPLS transport -- 18.3.2.100 Gb/s interconnections and coherent DWDM transmission -- 18.3.3.Optical transport networking (ITU G.709 standard) -- 18.3.4.Fully flexible DWDM add-drop multiplexing and switching -- 18.3.5.WSON and GMPLS control-plane advancements -- 18.4.The network value of photonics technology innovation -- 18.5.The network value of optical transport innovation -- 18.6.Outlook -- 18.7.Summary -- References -- ch. 19 Novel Architectures for Streaming/Routing in Optical Networks / Vincent W.S. Chan -- 19.1.Introduction and historical perspectives on connection and connectionless oriented optical transports -- 19.2.Essence of the major types of optical transports: optical packet switching (OPS), optical burst switching (OBS), and optical flow switching (OFS) -- 19.2.1.A brief history of OFS -- 19.3.Network architecture description and layering -- 19.3.1.The need for new architecture constructs for optical networks -- 19.3.2.OFS architectural principles -- 19.4.Definition of network "capacity" and evaluation of achievable network capacity regions of different types of optical transports -- 19.5.Physical topology of fiber plant and optical switching functions at nodes and the effects of transmission impairments and session dynamics on network architecture -- 19.6.Network management and control functions and scalable architectures -- 19.7.Media access control (MAC) protocol and implications on routing protocol efficiency and scalability -- 19.8.Transport layer protocol for new optical transports -- 19.9.Cost, power consumption throughput, and delay performance -- 19.10.Summary -- References -- ch. 20 Recent Advances in High-Frequency (> 10GHz) Microwave Photonic Links / Edward I. Ackerman -- 20.1.Introduction -- 20.2.Photonic links for receive-only applications -- 20.2.1.Effect of modulator bias point -- 20.2.2.Effect of balanced photodetection -- 20.3.Photonic links for transmit and receive applications -- 20.3.1.Broad bandwidth TIPRx -- 20.3.2.High frequency TIPRx -- 20.4.Summary -- References -- ch. 21 Advances in 1-100GHz Microwave Photonics: All-Band Optical Wireless Access Networks Using Radio Over Fiber Technologies / Shu-Hao Fan -- 21.1.Introduction -- 21.2.Optical RF wave generation -- 21.2.1.Overview of optical RF signal generation -- 21.2.2.Types of optical RF waves -- 21.2.3.ODSB millimeter wave -- 21.2.4.OSSB+C millimeter wave -- 21.2.5.OCS millimeter wave -- 21.2.6.Conversion efficiency -- 21.3.Converged ROF transmission system -- 21.3.1.Generation and transmission of multiple RF bands -- 21.3.2.Baseband, microwave, and millimeter wave -- 21.3.3.Millimeter wave with wireless services in low RF regions -- 21.3.4.60-GHz sub-bands generation -- 21.4.Conclusions -- References -- ch. 22 PONs: State of the Art and Standardized / Frank Effenberger -- 22.1.Introduction to PON -- 22.2.TDM PONs: Basic design and issues -- 22.2.1.Brief review of TDM PON standards -- 22.2.2.Generation 4: 10Gbit/s PONs -- 22.2.3.40G serial -- 22.3.Video overlay -- 22.4.WDM PONs: common elements -- 22.4.1.Injection locked -- 22.4.2.Wavelength reuse -- 22.4.3.Self-seeded -- 22.4.4.Tunable -- 22.4.5.Coherent -- 22.5.FDM-PONs: Motivation -- 22.5.1.Pure FDM -- 22.5.2.Incoherent OFDM -- 22.5.3.Optical OFDM -- 22.6.Hybrid TWDM-PON -- 22.7.Summary and outlook -- References -- ch. 23 Wavelength-Division-Multiplexed Passive Optical Networks (WDM PONs) / Y. Takushima -- 23.1.Introduction -- 23.2.Light sources for WDM PON -- 23.2.1.Distributed feedback (DFB) laser -- 23.2.2.Tunable laser -- 23.2.3.Spectrum-sliced incoherent light source -- 23.2.4.Reflective light sources -- 23.2.5.Re-modulation scheme for upstream transmission -- 23.3.WDM PON architectures -- 23.3.1.WDM PON in wavelength-routing architecture -- 23.3.2.WDM PON in broadcast-and-select architecture -- 23.3.3.WDM PON in ring/bus architectures -- 23.4.Long-reach WDM PONs -- 23.4.1.Fundamental limitations on the reach of WDM PON -- 23.4.2.Long-reach WDM PON using remote optical amplifiers -- 23.4.3.Long-reach WDM PON using coherent detection technique -- 23.5.Next-generation high-speed WDM PON -- 23.5.1.Limitation on the operating speed of colorless light sources --

Note continued: 23.5.2.Modulation bandwidth of RSOA and its equalization technique -- 23.5.3.Utilization of advanced modulation formats -- 23.5.4.Ultrahigh-speed WDM PON -- 23.6.Fault monitoring, localization and protection techniques -- 23.6.1.Fault localization techniques for WDM PON -- 23.6.2.Survivable WDM PONs -- 23.7.Summary -- Appendix: Acronyms -- References -- ch. 24 FTTX Worldwide Deployment / Zisen Zhao -- 24.1.Introduction -- 24.2.Background of fiber architectures -- 24.2.1.Passive optical networks (PONs) -- 24.2.2.Point to point -- 24.3.Technology variants -- 24.3.1.B-PON -- 24.3.2.GE-PON -- 22.3.3.G-PON -- 24.3.4.Next-generation PON technologies -- 24.3.5.Coexistence and wavelength plan -- 24.3.6.Extended reach systems -- 24.3.7.CO consolidation -- 24.4.Status and FTTX deployments around the world -- 24.4.1.FTTX in Asia -- 24.4.2.FTTX in Europe and Africa -- 24.4.3.FTTX in the Americas -- 24.5.What's Next? -- 24.6.Summary -- References -- ch. 25 Modern Undersea Transmission Technology / Georg Mohs -- 25.1.Introduction -- 25.1.1.Reach, latency and capacity -- 25.1.2.The capacity challenge -- 25.2.Coherent transmission technology in undersea systems -- 25.2.1.Introduction to coherent detection -- 25.2.2.Linear impairment compensation with coherent detection -- 25.2.3.Nonlinearity accumulation in dispersion uncompensated transmission -- 25.3.Increasing spectral efficiency by bandwidth constraint -- 25.3.1.Inter-symbol interference compensation by linear filters -- 25.3.2.Multi-symbol detection -- 25.4.Nyquist carrier spacing -- 25.4.1.Spectral shaping for single channel modulation formats -- 25.4.2.Orthogonal frequency division multiplexing (OFDM) -- 25.4.3.Super-channels -- 25.5.Increasing spectral efficiency by increasing the constellation size -- 25.5.1.Higher order modulation formats -- 25.5.2.Receiver sensitivity -- 25.5.3.Coded modulation -- 25.6.Future trends -- 25.6.1.Nonlinearitycompensation -- 25.6.2.Multi-core and multi-mode fiber -- 25.7.Summary -- List of acronyms -- References.

19

Con tecnología Koha

// {lang: 'es-ES'} //