MARC details
000 -LIDER |
fixed length control field |
04801nam a22005295i 4500 |
001 - CONTROL NUMBER |
control field |
978-3-319-45797-0 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
DE-He213 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20180206182942.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr nn 008mamaa |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
161226s2016 gw | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783319457970 |
-- |
978-3-319-45797-0 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
QA76.9.D343 |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UNF |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYQE |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
COM021030 |
Source |
bisacsh |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
006.312 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Steele, Brian. |
Relator term |
author. |
245 10 - TITLE STATEMENT |
Title |
Algorithms for Data Science |
Medium |
[recurso electrónico] / |
Statement of responsibility, etc. |
by Brian Steele, John Chandler, Swarna Reddy. |
264 #1 - |
-- |
Cham : |
-- |
Springer International Publishing : |
-- |
Imprint: Springer, |
-- |
2016. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
XXIII, 430 p. 48 illus., 30 illus. in color. |
Other physical details |
online resource. |
336 ## - |
-- |
text |
-- |
txt |
-- |
rdacontent |
337 ## - |
-- |
computer |
-- |
c |
-- |
rdamedia |
338 ## - |
-- |
online resource |
-- |
cr |
-- |
rdacarrier |
347 ## - |
-- |
text file |
-- |
PDF |
-- |
rda |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Introduction -- Data Mapping and Data Dictionaries -- Scalable Algorithms and Associative Statistics -- Hadoop and MapReduce -- Data Visualization -- Linear Regression Methods -- Healthcare Analytics -- Cluster Analysis -- k-Nearest Neighbor Prediction Functions -- The Multinomial Naive Bayes Prediction Function -- Forecasting -- Real-time Analytics. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
This textbook on practical data analytics unites fundamental principles, algorithms, and data. Algorithms are the keystone of data analytics and the focal point of this textbook. Clear and intuitive explanations of the mathematical and statistical foundations make the algorithms transparent. But practical data analytics requires more than just the foundations. Problems and data are enormously variable and only the most elementary of algorithms can be used without modification. Programming fluency and experience with real and challenging data is indispensable and so the reader is immersed in Python and R and real data analysis. By the end of the book, the reader will have gained the ability to adapt algorithms to new problems and carry out innovative analyses. This book has three parts: (a) Data Reduction: Begins with the concepts of data reduction, data maps, and information extraction. The second chapter introduces associative statistics, the mathematical foundation of scalable algorithms and distributed computing. Practical aspects of distributed computing is the subject of the Hadoop and MapReduce chapter. (b) Extracting Information from Data: Linear regression and data visualization are the principal topics of Part II. The authors dedicate a chapter to the critical domain of Healthcare Analytics for an extended example of practical data analytics. The algorithms and analytics will be of much interest to practitioners interested in utilizing the large and unwieldly data sets of the Centers for Disease Control and Prevention's Behavioral Risk Factor Surveillance System. (c) Predictive Analytics Two foundational and widely used algorithms, k-nearest neighbors and naive Bayes, are developed in detail. A chapter is dedicated to forecasting. The last chapter focuses on streaming data and uses publicly accessible data streams originating from the Twitter API and the NASDAQ stock market in the tutorials. This book is intended for a one- or two-semester course in data analytics for upper-division undergraduate and graduate students in mathematics, statistics, and computer science. The prerequisites are kept low, and students with one or two courses in probability or statistics, an exposure to vectors and matrices, and a programming course will have no difficulty. The core material of every chapter is accessible to all with these prerequisites. The chapters often expand at the close with innovations of interest to practitioners of data science. Each chapter includes exercises of varying levels of difficulty. The text is eminently suitable for self-study and an exceptional resource for practitioners. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computer science. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Health informatics. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computer science |
Subdivisión general |
Mathematics. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Data mining. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Statistics. |
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computer Science. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Data Mining and Knowledge Discovery. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Statistics and Computing/Statistics Programs. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Mathematics of Computing. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Health Informatics. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Chandler, John. |
Relator term |
author. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Reddy, Swarna. |
Relator term |
author. |
710 2# - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
SpringerLink (Online service) |
773 0# - HOST ITEM ENTRY |
Title |
Springer eBooks |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783319457956 |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Public note |
Libro electrónico |
Uniform Resource Identifier |
http://148.231.10.114:2048/login?url=http://dx.doi.org/10.1007/978-3-319-45797-0 |
912 ## - |
-- |
ZDB-2-SCS |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Libro Electrónico |