MARC details
000 -LIDER |
fixed length control field |
05658nam a22005775i 4500 |
001 - CONTROL NUMBER |
control field |
978-3-319-72347-1 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
DE-He213 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20210201191315.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr nn 008mamaa |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
180827s2018 gw | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783319723471 |
-- |
978-3-319-72347-1 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
QA76.9.B45 |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UN |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
COM021000 |
Source |
bisacsh |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UN |
Source |
thema |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
005.7 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Dinov, Ivo D. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
245 10 - TITLE STATEMENT |
Title |
Data Science and Predictive Analytics |
Medium |
[electronic resource] : |
Remainder of title |
Biomedical and Health Applications using R / |
Statement of responsibility, etc. |
by Ivo D. Dinov. |
250 ## - EDITION STATEMENT |
Edition statement |
1st ed. 2018. |
264 #1 - |
-- |
Cham : |
-- |
Springer International Publishing : |
-- |
Imprint: Springer, |
-- |
2018. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
XXXIV, 832 p. 1443 illus., 1245 illus. in color. |
Other physical details |
online resource. |
336 ## - |
-- |
text |
-- |
txt |
-- |
rdacontent |
337 ## - |
-- |
computer |
-- |
c |
-- |
rdamedia |
338 ## - |
-- |
online resource |
-- |
cr |
-- |
rdacarrier |
347 ## - |
-- |
text file |
-- |
PDF |
-- |
rda |
500 ## - GENERAL NOTE |
General note |
Acceso multiusuario |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
1 Introduction -- 2 Foundations of R -- 3 Managing Data in R -- 4 Data Visualization -- 5 Linear Algebra & Matrix Computing -- 6 Dimensionality Reduction -- 7 Lazy Learning: Classification Using Nearest Neighbors -- 8 Probabilistic Learning: Classification Using Naive Bayes -- 9 Decision Tree Divide and Conquer Classification -- 10 Forecasting Numeric Data Using Regression Models -- 11 Black Box Machine-Learning Methods: Neural Networks and Support Vector Machines -- 12 Apriori Association Rules Learning -- 13 k-Means Clustering -- 14 Model Performance Assessment -- 15 Improving Model Performance -- 16 Specialized Machine Learning Topics -- 17 Variable/Feature Selection -- 18 Regularized Linear Modeling and Controlled Variable Selection -- 19 Big Longitudinal Data Analysis -- 20 Natural Language Processing/Text Mining -- 21 Prediction and Internal Statistical Cross Validation -- 22 Function Optimization -- 23 Deep Learning Neural Networks -- 24 Summary -- 25 Glossary -- 26 Index -- 27 Errata. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Over the past decade, Big Data have become ubiquitous in all economic sectors, scientific disciplines, and human activities. They have led to striking technological advances, affecting all human experiences. Our ability to manage, understand, interrogate, and interpret such extremely large, multisource, heterogeneous, incomplete, multiscale, and incongruent data has not kept pace with the rapid increase of the volume, complexity and proliferation of the deluge of digital information. There are three reasons for this shortfall. First, the volume of data is increasing much faster than the corresponding rise of our computational processing power (Kryder's law > Moore's law). Second, traditional discipline-bounds inhibit expeditious progress. Third, our education and training activities have fallen behind the accelerated trend of scientific, information, and communication advances. There are very few rigorous instructional resources, interactive learning materials, and dynamic training environments that support active data science learning. The textbook balances the mathematical foundations with dexterous demonstrations and examples of data, tools, modules and workflows that serve as pillars for the urgently needed bridge to close that supply and demand predictive analytic skills gap. Exposing the enormous opportunities presented by the tsunami of Big data, this textbook aims to identify specific knowledge gaps, educational barriers, and workforce readiness deficiencies. Specifically, it focuses on the development of a transdisciplinary curriculum integrating modern computational methods, advanced data science techniques, innovative biomedical applications, and impactful health analytics. The content of this graduate-level textbook fills a substantial gap in integrating modern engineering concepts, computational algorithms, mathematical optimization, statistical computing and biomedical inference. Big data analytic techniques and predictive scientific methods demand broad transdisciplinary knowledge, appeal to an extremely wide spectrum of readers/learners, and provide incredible opportunities for engagement throughout the academy, industry, regulatory and funding agencies. |
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE |
Owner |
UABC ; |
Method of acquisition |
Temporal ; |
Date of acquisition |
01/01/2021-12/31/2023. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Big data. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Health informatics. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Mathematical statistics. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Data mining. |
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Big Data. |
-- |
https://scigraph.springernature.com/ontologies/product-market-codes/I29120 |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Big Data/Analytics. |
-- |
https://scigraph.springernature.com/ontologies/product-market-codes/522070 |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Health Informatics. |
-- |
https://scigraph.springernature.com/ontologies/product-market-codes/H28009 |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Probability and Statistics in Computer Science. |
-- |
https://scigraph.springernature.com/ontologies/product-market-codes/I17036 |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Data Mining and Knowledge Discovery. |
-- |
https://scigraph.springernature.com/ontologies/product-market-codes/I18030 |
710 2# - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
SpringerLink (Online service) |
773 0# - HOST ITEM ENTRY |
Title |
Springer Nature eBook |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783319723464 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783319723488 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783030101879 |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Public note |
Libro electrónico |
Uniform Resource Identifier |
http://148.231.10.114:2048/login?url=https://doi.org/10.1007/978-3-319-72347-1 |
912 ## - |
-- |
ZDB-2-SCS |
912 ## - |
-- |
ZDB-2-SXCS |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Libro Electrónico |