Imaginary Mathematics for Computer Science (Registro nro. 242607)

MARC details
000 -LIDER
fixed length control field 04328nam a22005055i 4500
001 - CONTROL NUMBER
control field 978-3-319-94637-5
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20210201191349.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 180816s2018 gw | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783319946375
-- 978-3-319-94637-5
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number QA76.9.M35
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYAM
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code COM018000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYAM
Source thema
072 #7 - SUBJECT CATEGORY CODE
Subject category code UFM
Source thema
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 004.0151
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Vince, John.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
245 10 - TITLE STATEMENT
Title Imaginary Mathematics for Computer Science
Medium [electronic resource] /
Statement of responsibility, etc. by John Vince.
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2018.
264 #1 -
-- Cham :
-- Springer International Publishing :
-- Imprint: Springer,
-- 2018.
300 ## - PHYSICAL DESCRIPTION
Extent XVII, 301 p. 99 illus. in color.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
500 ## - GENERAL NOTE
General note Acceso multiusuario
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Introduction -- Complex Numbers -- Matrix Algebra -- Quaternions -- Octonions -- Geometric Algebra -- Trigonometric Identities using Complex Numbers -- Combining Waves using Complex Numbers -- Circuit Analysis using Complex Numbers -- Geometry Using Geometric Algebra -- Rotating Vectors using Quaternions -- Complex Numbers and the Riemann Hypothesis -- The Mandelbrot Set -- Conclusion -- Index.
520 ## - SUMMARY, ETC.
Summary, etc. The imaginary unit i = √-1 has been used by mathematicians for nearly five-hundred years, during which time its physical meaning has been a constant challenge. Unfortunately, René Descartes referred to it as "imaginary", and the use of the term "complex number" compounded the unnecessary mystery associated with this amazing object. Today, i = √-1 has found its way into virtually every branch of mathematics, and is widely employed in physics and science, from solving problems in electrical engineering to quantum field theory. John Vince describes the evolution of the imaginary unit from the roots of quadratic and cubic equations, Hamilton's quaternions, Cayley's octonions, to Grassmann's geometric algebra. In spite of the aura of mystery that surrounds the subject, John Vince makes the subject accessible and very readable. The first two chapters cover the imaginary unit and its integration with real numbers. Chapter 3 describes how complex numbers work with matrices, and shows how to compute complex eigenvalues and eigenvectors. Chapters 4 and 5 cover Hamilton's invention of quaternions, and Cayley's development of octonions, respectively. Chapter 6 provides a brief introduction to geometric algebra, which possesses many of the imaginary qualities of quaternions, but works in space of any dimension. The second half of the book is devoted to applications of complex numbers, quaternions and geometric algebra. John Vince explains how complex numbers simplify trigonometric identities, wave combinations and phase differences in circuit analysis, and how geometric algebra resolves geometric problems, and quaternions rotate 3D vectors. There are two short chapters on the Riemann hypothesis and the Mandelbrot set, both of which use complex numbers. The last chapter references the role of complex numbers in quantum mechanics, and ends with Schrödinger's famous wave equation. Filled with lots of clear examples and useful illustrations, this compact book provides an excellent introduction to imaginary mathematics for computer science.
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE
Owner UABC ;
Method of acquisition Temporal ;
Date of acquisition 01/01/2021-12/31/2023.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Computer science-Mathematics.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Math Applications in Computer Science.
-- https://scigraph.springernature.com/ontologies/product-market-codes/I17044
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer Nature eBook
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783319946368
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783319946382
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783030068875
856 40 - ELECTRONIC LOCATION AND ACCESS
Public note Libro electrónico
Uniform Resource Identifier http://148.231.10.114:2048/login?url=https://doi.org/10.1007/978-3-319-94637-5
912 ## -
-- ZDB-2-SCS
912 ## -
-- ZDB-2-SXCS
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Libro Electrónico
Existencias
Estado de retiro Colección Ubicación permanente Ubicación actual Fecha de ingreso Total Checkouts Date last seen Número de copia Tipo de material
  Colección de Libros Electrónicos Biblioteca Electrónica Biblioteca Electrónica 01/02/2021   01/02/2021 1 Libro Electrónico

Con tecnología Koha