MARC details
000 -LIDER |
fixed length control field |
03809nam a22005895i 4500 |
001 - CONTROL NUMBER |
control field |
978-3-031-32832-9 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
DE-He213 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20240207153631.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr nn 008mamaa |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
230703s2023 sz | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783031328329 |
-- |
978-3-031-32832-9 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TK5102.9 |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
TJF |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYS |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
TEC008000 |
Source |
bisacsh |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
TJF |
Source |
thema |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYS |
Source |
thema |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
621.382 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Vaquerizo Villar, Fernando. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
245 10 - TITLE STATEMENT |
Title |
Automated Analysis of the Oximetry Signal to Simplify the Diagnosis of Pediatric Sleep Apnea |
Medium |
[electronic resource] : |
Remainder of title |
From Feature-Engineering to Deep-Learning Approaches / |
Statement of responsibility, etc. |
by Fernando Vaquerizo Villar. |
250 ## - EDITION STATEMENT |
Edition statement |
1st ed. 2023. |
264 #1 - |
-- |
Cham : |
-- |
Springer Nature Switzerland : |
-- |
Imprint: Springer, |
-- |
2023. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
XVIII, 90 p. 18 illus., 17 illus. in color. |
Other physical details |
online resource. |
336 ## - |
-- |
text |
-- |
txt |
-- |
rdacontent |
337 ## - |
-- |
computer |
-- |
c |
-- |
rdamedia |
338 ## - |
-- |
online resource |
-- |
cr |
-- |
rdacarrier |
347 ## - |
-- |
text file |
-- |
PDF |
-- |
rda |
490 1# - SERIES STATEMENT |
Series statement |
Springer Theses, Recognizing Outstanding Ph.D. Research, |
International Standard Serial Number |
2190-5061 |
500 ## - GENERAL NOTE |
General note |
Acceso multiusuario |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Introduction -- Hypotheses and Objectives -- Methods -- Results -- Discussion. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
This book describes the application of novel signal processing algorithms to improve the diagnostic capability of the blood oxygen saturation signal (SpO2) from nocturnal oximetry in the simplification of pediatric obstructive sleep apnea (OSA) diagnosis. For this purpose, 3196 SpO2 recordings from three different databases were analyzed using feature-engineering and deep-learning methodologies. Particularly, three novel feature extraction algorithms (bispectrum, wavelet, and detrended fluctuation analysis), as well as a novel deep-learning architecture based on convolutional neural networks are proposed. The proposed feature-engineering and deep-learning models outperformed conventional features from the oximetry signal, as well as state-of-the-art approaches. On the one hand, this book shows that bispectrum, wavelet, and detrended fluctuation analysis can be used to characterize changes in the SpO2 signal caused by apneic events in pediatric subjects. On the other hand, it demonstrates that deep-learning algorithms can learn complex features from oximetry dynamics that allow to enhance the diagnostic capability of nocturnal oximetry in the context of childhood OSA. All in all, this book offers a comprehensive and timely guide to the use of signal processing and AI methods in the diagnosis of pediatric OSA, including novel methodological insights concerning the automated analysis of the oximetry signal. It also discusses some open questions for future research. |
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE |
Owner |
UABC ; |
Method of acquisition |
Perpetuidad |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Signal processing. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Biomedical engineering. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Machine learning. |
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Signal, Speech and Image Processing . |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Biomedical Devices and Instrumentation. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Machine Learning. |
710 2# - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
SpringerLink (Online service) |
773 0# - HOST ITEM ENTRY |
Title |
Springer Nature eBook |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031328312 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031328336 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031328343 |
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE |
Uniform title |
Springer Theses, Recognizing Outstanding Ph.D. Research, |
-- |
2190-5061 |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Public note |
Libro electrónico |
Uniform Resource Identifier |
http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-32832-9 |
912 ## - |
-- |
ZDB-2-ENG |
912 ## - |
-- |
ZDB-2-SXE |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Libro Electrónico |