Automated Analysis of the Oximetry Signal to Simplify the Diagnosis of Pediatric Sleep Apnea (Registro nro. 262048)

MARC details
000 -LIDER
fixed length control field 03809nam a22005895i 4500
001 - CONTROL NUMBER
control field 978-3-031-32832-9
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20240207153631.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 230703s2023 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783031328329
-- 978-3-031-32832-9
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number TK5102.9
072 #7 - SUBJECT CATEGORY CODE
Subject category code TJF
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYS
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code TEC008000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code TJF
Source thema
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYS
Source thema
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 621.382
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Vaquerizo Villar, Fernando.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
245 10 - TITLE STATEMENT
Title Automated Analysis of the Oximetry Signal to Simplify the Diagnosis of Pediatric Sleep Apnea
Medium [electronic resource] :
Remainder of title From Feature-Engineering to Deep-Learning Approaches /
Statement of responsibility, etc. by Fernando Vaquerizo Villar.
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2023.
264 #1 -
-- Cham :
-- Springer Nature Switzerland :
-- Imprint: Springer,
-- 2023.
300 ## - PHYSICAL DESCRIPTION
Extent XVIII, 90 p. 18 illus., 17 illus. in color.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
490 1# - SERIES STATEMENT
Series statement Springer Theses, Recognizing Outstanding Ph.D. Research,
International Standard Serial Number 2190-5061
500 ## - GENERAL NOTE
General note Acceso multiusuario
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Introduction -- Hypotheses and Objectives -- Methods -- Results -- Discussion.
520 ## - SUMMARY, ETC.
Summary, etc. This book describes the application of novel signal processing algorithms to improve the diagnostic capability of the blood oxygen saturation signal (SpO2) from nocturnal oximetry in the simplification of pediatric obstructive sleep apnea (OSA) diagnosis. For this purpose, 3196 SpO2 recordings from three different databases were analyzed using feature-engineering and deep-learning methodologies. Particularly, three novel feature extraction algorithms (bispectrum, wavelet, and detrended fluctuation analysis), as well as a novel deep-learning architecture based on convolutional neural networks are proposed. The proposed feature-engineering and deep-learning models outperformed conventional features from the oximetry signal, as well as state-of-the-art approaches. On the one hand, this book shows that bispectrum, wavelet, and detrended fluctuation analysis can be used to characterize changes in the SpO2 signal caused by apneic events in pediatric subjects. On the other hand, it demonstrates that deep-learning algorithms can learn complex features from oximetry dynamics that allow to enhance the diagnostic capability of nocturnal oximetry in the context of childhood OSA. All in all, this book offers a comprehensive and timely guide to the use of signal processing and AI methods in the diagnosis of pediatric OSA, including novel methodological insights concerning the automated analysis of the oximetry signal. It also discusses some open questions for future research.
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE
Owner UABC ;
Method of acquisition Perpetuidad
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Signal processing.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Biomedical engineering.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Machine learning.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Signal, Speech and Image Processing .
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Biomedical Devices and Instrumentation.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Machine Learning.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer Nature eBook
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783031328312
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783031328336
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783031328343
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Springer Theses, Recognizing Outstanding Ph.D. Research,
-- 2190-5061
856 40 - ELECTRONIC LOCATION AND ACCESS
Public note Libro electrónico
Uniform Resource Identifier http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-32832-9
912 ## -
-- ZDB-2-ENG
912 ## -
-- ZDB-2-SXE
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Libro Electrónico
Existencias
Estado de retiro Colección Ubicación permanente Ubicación actual Fecha de ingreso Total Checkouts Date last seen Número de copia Tipo de material
  Colección de Libros Electrónicos Biblioteca Electrónica Biblioteca Electrónica 07/02/2024   07/02/2024 1 Libro Electrónico

Con tecnología Koha