MARC details
000 -LIDER |
fixed length control field |
04511nam a22005775i 4500 |
001 - CONTROL NUMBER |
control field |
978-981-99-7882-3 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
DE-He213 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250516155949.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr nn 008mamaa |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240124s2024 si | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9789819978823 |
-- |
978-981-99-7882-3 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TA1634 |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYQV |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
COM016000 |
Source |
bisacsh |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYQV |
Source |
thema |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
006.37 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Toennies, Klaus D. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
245 13 - TITLE STATEMENT |
Title |
An Introduction to Image Classification |
Medium |
[electronic resource] : |
Remainder of title |
From Designed Models to End-to-End Learning / |
Statement of responsibility, etc. |
by Klaus D. Toennies. |
250 ## - EDITION STATEMENT |
Edition statement |
1st ed. 2024. |
264 #1 - |
-- |
Singapore : |
-- |
Springer Nature Singapore : |
-- |
Imprint: Springer, |
-- |
2024. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
XVI, 290 p. 1 illus. |
Other physical details |
online resource. |
336 ## - |
-- |
text |
-- |
txt |
-- |
rdacontent |
337 ## - |
-- |
computer |
-- |
c |
-- |
rdamedia |
338 ## - |
-- |
online resource |
-- |
cr |
-- |
rdacarrier |
347 ## - |
-- |
text file |
-- |
PDF |
-- |
rda |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Chapter 1. Image Classification - A Computer Vision Task -- Chapter 2. Image Features - Extraction and Categories -- Chapter 3. Feature Reduction -- Chapter 4. Bayesian Image Classification in Feature Space -- Chapter 5. Distance-based Classifiers -- Chapter 6. Decision Boundaries in Feature Space -- Chapter 7. Multi-layer Perceptron for Image Classification -- Chapter 8. Feature Extraction by Convolutional Neural Network -- Chapter 9. Network Set-up for Image Classification -- Chapter 10. Basic Network Training for Image Classification -- Chapter 11. Dealing with Training Deficiencies -- Chapter 12. Learning Effects and Network Decisions. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Image classification is a critical component in computer vision tasks and has numerous applications. Traditional methods for image classification involve feature extraction and classification in feature space. Current state-of-the-art methods utilize end-to-end learning with deep neural networks, where feature extraction and classification are integrated into the model. Understanding traditional image classification is important because many of its design concepts directly correspond to components of a neural network. This knowledge can help demystify the behavior of these networks, which may seem opaque at first sight. The book starts from introducing methods for model-driven feature extraction and classification, including basic computer vision techniques for extracting high-level semantics from images. A brief overview of probabilistic classification with generative and discriminative classifiers is then provided. Next, neural networks are presented as a means to learn a classification model directly from labeled sample images, with individual components of the network discussed. The relationships between network components and those of a traditional designed model are explored, and different concepts for regularizing model training are explained. Finally, various methods for analyzing what a network has learned are covered in the closing section of the book. The topic of image classification is presented as a thoroughly curated sequence of steps that gradually increase understanding of the working of a fully trainable classifier. Practical exercises in Python/Keras/Tensorflow have been designed to allow for experimental exploration of these concepts. In each chapter, suitable functions from Python modules are briefly introduced to provide students with the necessary tools to conduct these experiments. |
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE |
Owner |
UABC ; |
Method of acquisition |
Perpetuidad |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computer vision. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Machine learning. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Pattern recognition systems. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Biometric identification. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Artificial intelligence |
Subdivisión general |
Data processing. |
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computer Vision. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Machine Learning. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Automated Pattern Recognition. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Biometrics. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Data Science. |
710 2# - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
SpringerLink (Online service) |
773 0# - HOST ITEM ENTRY |
Title |
Springer Nature eBook |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9789819978816 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9789819978830 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9789819978847 |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Public note |
Libro electrónico |
Uniform Resource Identifier |
http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-99-7882-3 |
912 ## - |
-- |
ZDB-2-SCS |
912 ## - |
-- |
ZDB-2-SXCS |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Libro Electrónico |