Smart Big Data in Digital Agriculture Applications (Registro nro. 274330)

MARC details
000 -LIDER
fixed length control field 05897nam a22005895i 4500
001 - CONTROL NUMBER
control field 978-3-031-52645-9
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250516160002.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240228s2024 sz | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9783031526459
-- 978-3-031-52645-9
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number S1-972
072 #7 - SUBJECT CATEGORY CODE
Subject category code TVB
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code TEC003000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code TVB
Source thema
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 630
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Niu, Haoyu.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
245 10 - TITLE STATEMENT
Title Smart Big Data in Digital Agriculture Applications
Medium [electronic resource] :
Remainder of title Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence /
Statement of responsibility, etc. by Haoyu Niu, YangQuan Chen.
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2024.
264 #1 -
-- Cham :
-- Springer Nature Switzerland :
-- Imprint: Springer,
-- 2024.
300 ## - PHYSICAL DESCRIPTION
Extent XVIII, 239 p. 1 illus.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
490 1# - SERIES STATEMENT
Series statement Agriculture Automation and Control,
International Standard Serial Number 2731-3506
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Part I Why Big Data Is Not Smart Yet? -- 1. Introduction -- 2. Why Do Big Data and Machine Learning Entail the Fractional Dynamics? -- Part II Smart Big Data Acquisition Platforms -- 3. Small Unmanned Aerial Vehicles (UAVs) and Remote Sensing Payloads -- 4. The Edge-AI Sensors and Internet of Living Things (IoLT) -- 5. The Unmanned Ground Vehicles (UGVs) for Digital Agriculture -- Part III Advanced Big Data Analytics, Plant Physiology-informed Machine Learning, and Fractional-order Thinking -- 6. Fundamentals of Big Data, Machine Learning, and Computer VisionWorkflow -- 7. A Low-cost Proximate Sensing Method for Early Detection of Nematodes inWalnut Using Machine Learning Algorithms -- 8. Tree-level Evapotranspiration Estimation of Pomegranate Trees Using Lysimeter and UAV Multispectral Imagery -- 9. Individual Tree-level Water Status Inference Using High-resolution UAV Thermal Imagery and Complexity-informed Machine Learning -- 10. Scale-aware Pomegranate Yield Prediction Using UAV Imagery and Machine Learning -- Part IV Towards Smart Big Data in Digital Agriculture -- 11. Intelligent Bugs Mapping and Wiping (iBMW): An Affordable Robot-Driven Robot for Farmers -- 12. A Non-invasive Stem Water Potential Monitoring Method Using Proximate Sensor and Machine Learning Classification Algorithms -- 13. A Low-cost Soil Moisture Monitoring Method by Using Walabot and Machine Learning Algorithms -- 14. Conclusions and Future Research.
520 ## - SUMMARY, ETC.
Summary, etc. In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent "complexity" and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it "smart" is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization? 2.) How can we achieve a more optimal optimization? 3.) Is it possible to demand "more optimal machine learning," exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture? This book details the foundations of the plant physiology-informed machine learning (PPIML) and the principle of tail matching (POTM) framework. It is the 9th title of the "Agriculture Automation and Control" book series published by Springer.
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE
Owner UABC ;
Method of acquisition Perpetuidad
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Agriculture.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Plant physiology.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Quantitative research.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Engineering design.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Agriculture.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Plant Physiology.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Data Analysis and Big Data.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Engineering Design.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Chen, YangQuan.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer Nature eBook
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783031526442
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783031526466
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9783031526473
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Agriculture Automation and Control,
-- 2731-3506
856 40 - ELECTRONIC LOCATION AND ACCESS
Public note Libro electrónico
Uniform Resource Identifier http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-52645-9
912 ## -
-- ZDB-2-SBL
912 ## -
-- ZDB-2-SXB
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Libro Electrónico
Existencias
Estado de retiro Colección Ubicación permanente Ubicación actual Fecha de ingreso Total Checkouts Date last seen Número de copia Tipo de material
  Colección de Libros Electrónicos Biblioteca Electrónica Biblioteca Electrónica 16/05/2025   16/05/2025 1 Libro Electrónico

Con tecnología Koha