MARC details
000 -LIDER |
fixed length control field |
05897nam a22005895i 4500 |
001 - CONTROL NUMBER |
control field |
978-3-031-52645-9 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
DE-He213 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250516160002.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr nn 008mamaa |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240228s2024 sz | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783031526459 |
-- |
978-3-031-52645-9 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
S1-972 |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
TVB |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
TEC003000 |
Source |
bisacsh |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
TVB |
Source |
thema |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
630 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Niu, Haoyu. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
245 10 - TITLE STATEMENT |
Title |
Smart Big Data in Digital Agriculture Applications |
Medium |
[electronic resource] : |
Remainder of title |
Acquisition, Advanced Analytics, and Plant Physiology-informed Artificial Intelligence / |
Statement of responsibility, etc. |
by Haoyu Niu, YangQuan Chen. |
250 ## - EDITION STATEMENT |
Edition statement |
1st ed. 2024. |
264 #1 - |
-- |
Cham : |
-- |
Springer Nature Switzerland : |
-- |
Imprint: Springer, |
-- |
2024. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
XVIII, 239 p. 1 illus. |
Other physical details |
online resource. |
336 ## - |
-- |
text |
-- |
txt |
-- |
rdacontent |
337 ## - |
-- |
computer |
-- |
c |
-- |
rdamedia |
338 ## - |
-- |
online resource |
-- |
cr |
-- |
rdacarrier |
347 ## - |
-- |
text file |
-- |
PDF |
-- |
rda |
490 1# - SERIES STATEMENT |
Series statement |
Agriculture Automation and Control, |
International Standard Serial Number |
2731-3506 |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Part I Why Big Data Is Not Smart Yet? -- 1. Introduction -- 2. Why Do Big Data and Machine Learning Entail the Fractional Dynamics? -- Part II Smart Big Data Acquisition Platforms -- 3. Small Unmanned Aerial Vehicles (UAVs) and Remote Sensing Payloads -- 4. The Edge-AI Sensors and Internet of Living Things (IoLT) -- 5. The Unmanned Ground Vehicles (UGVs) for Digital Agriculture -- Part III Advanced Big Data Analytics, Plant Physiology-informed Machine Learning, and Fractional-order Thinking -- 6. Fundamentals of Big Data, Machine Learning, and Computer VisionWorkflow -- 7. A Low-cost Proximate Sensing Method for Early Detection of Nematodes inWalnut Using Machine Learning Algorithms -- 8. Tree-level Evapotranspiration Estimation of Pomegranate Trees Using Lysimeter and UAV Multispectral Imagery -- 9. Individual Tree-level Water Status Inference Using High-resolution UAV Thermal Imagery and Complexity-informed Machine Learning -- 10. Scale-aware Pomegranate Yield Prediction Using UAV Imagery and Machine Learning -- Part IV Towards Smart Big Data in Digital Agriculture -- 11. Intelligent Bugs Mapping and Wiping (iBMW): An Affordable Robot-Driven Robot for Farmers -- 12. A Non-invasive Stem Water Potential Monitoring Method Using Proximate Sensor and Machine Learning Classification Algorithms -- 13. A Low-cost Soil Moisture Monitoring Method by Using Walabot and Machine Learning Algorithms -- 14. Conclusions and Future Research. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
In the dynamic realm of digital agriculture, the integration of big data acquisition platforms has sparked both curiosity and enthusiasm among researchers and agricultural practitioners. This book embarks on a journey to explore the intersection of artificial intelligence and agriculture, focusing on small-unmanned aerial vehicles (UAVs), unmanned ground vehicles (UGVs), edge-AI sensors and the profound impact they have on digital agriculture, particularly in the context of heterogeneous crops, such as walnuts, pomegranates, cotton, etc. For example, lightweight sensors mounted on UAVs, including multispectral and thermal infrared cameras, serve as invaluable tools for capturing high-resolution images. Their enhanced temporal and spatial resolutions, coupled with cost effectiveness and near-real-time data acquisition, position UAVs as an optimal platform for mapping and monitoring crop variability in vast expanses. This combination of data acquisition platforms and advanced analytics generates substantial datasets, necessitating a deep understanding of fractional-order thinking, which is imperative due to the inherent "complexity" and consequent variability within the agricultural process. Much optimism is vested in the field of artificial intelligence, such as machine learning (ML) and computer vision (CV), where the efficient utilization of big data to make it "smart" is of paramount importance in agricultural research. Central to this learning process lies the intricate relationship between plant physiology and optimization methods. The key to the learning process is the plant physiology and optimization method. Crafting an efficient optimization method raises three pivotal questions: 1.) What represents the best approach to optimization? 2.) How can we achieve a more optimal optimization? 3.) Is it possible to demand "more optimal machine learning," exemplified by deep learning, while minimizing the need for extensive labeled data for digital agriculture? This book details the foundations of the plant physiology-informed machine learning (PPIML) and the principle of tail matching (POTM) framework. It is the 9th title of the "Agriculture Automation and Control" book series published by Springer. |
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE |
Owner |
UABC ; |
Method of acquisition |
Perpetuidad |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Agriculture. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Plant physiology. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Quantitative research. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Engineering design. |
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Agriculture. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Plant Physiology. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Data Analysis and Big Data. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Engineering Design. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Chen, YangQuan. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
710 2# - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
SpringerLink (Online service) |
773 0# - HOST ITEM ENTRY |
Title |
Springer Nature eBook |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031526442 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031526466 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031526473 |
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE |
Uniform title |
Agriculture Automation and Control, |
-- |
2731-3506 |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Public note |
Libro electrónico |
Uniform Resource Identifier |
http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-52645-9 |
912 ## - |
-- |
ZDB-2-SBL |
912 ## - |
-- |
ZDB-2-SXB |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Libro Electrónico |