Unsupervised Domain Adaptation (Registro nro. 274829)

MARC details
000 -LIDER
fixed length control field 04643nam a22006015i 4500
001 - CONTROL NUMBER
control field 978-981-97-1025-6
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250516160025.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240422s2024 si | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789819710256
-- 978-981-97-1025-6
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number Q325.5-.7
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYQM
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code MAT029000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYQM
Source thema
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.31
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Li, Jingjing.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
245 10 - TITLE STATEMENT
Title Unsupervised Domain Adaptation
Medium [electronic resource] :
Remainder of title Recent Advances and Future Perspectives /
Statement of responsibility, etc. by Jingjing Li, Lei Zhu, Zhekai Du.
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2024.
264 #1 -
-- Singapore :
-- Springer Nature Singapore :
-- Imprint: Springer,
-- 2024.
300 ## - PHYSICAL DESCRIPTION
Extent XVI, 223 p. 78 illus., 44 illus. in color.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
490 1# - SERIES STATEMENT
Series statement Machine Learning: Foundations, Methodologies, and Applications,
International Standard Serial Number 2730-9916
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 1. Introduction to Domain Adaptation -- Chapter 2. Unsupervised Domain Adaptation Techniques -- Chapter 3. Criterion Optimization-Based Unsupervised Domain -- Chapter 4. Bi-Classifier Adversarial Learning-Based Unsupervised Domain -- Chapter 5. Source-Free Unsupervised Domain Adaptation -- Chapter 6. Active Learning for Unsupervised Domain Adaptation -- Chapter 7. Continual Test-Time Unsupervised Domain Adaptation -- Chapter 8. Applications -- Chapter 9. Research Frontier.
520 ## - SUMMARY, ETC.
Summary, etc. Unsupervised domain adaptation (UDA) is a challenging problem in machine learning where the model is trained on a source domain with labeled data and tested on a target domain with unlabeled data. In recent years, UDA has received significant attention from the research community due to its applicability in various real-world scenarios. This book provides a comprehensive review of state-of-the-art UDA methods and explores new variants of UDA that have the potential to advance the field. The book begins with a clear introduction to the UDA problem and is mainly organized into four technical sections, each focused on a specific piece of UDA research. The first section covers criterion optimization-based UDA, which aims to learn domain-invariant representations by minimizing the discrepancy between source and target domains. The second section discusses bi-classifier adversarial learning-based UDA, which creatively leverages adversarial learning by conducting a minimax game between the feature extractor and two task classifiers. The third section introduces source-free UDA, a novel UDA setting that does not require any raw data from the source domain. The fourth section presents active learning for UDA, which combines domain adaptation and active learning to reduce the amount of labeled data needed for adaptation. This book is suitable for researchers, graduate students, and practitioners who are interested in UDA and its applications in various fields, primarily in computer vision. The chapters are authored by leading experts in the field and provide a comprehensive and in-depth analysis of the current UDA methods and new directions for future research. With its broad coverage and cutting-edge research, this book is a valuable resource for anyone looking to advance their knowledge of UDA.
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE
Owner UABC ;
Method of acquisition Perpetuidad
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Machine learning.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Artificial intelligence
Subdivisión general Data processing.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Data mining.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Distribution (Probability theory).
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Machine Learning.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Data Science.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Data Mining and Knowledge Discovery.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Distribution Theory.
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Zhu, Lei.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
700 1# - ADDED ENTRY--PERSONAL NAME
Personal name Du, Zhekai.
Relator term author.
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer Nature eBook
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9789819710249
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9789819710263
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9789819710270
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE
Uniform title Machine Learning: Foundations, Methodologies, and Applications,
-- 2730-9916
856 40 - ELECTRONIC LOCATION AND ACCESS
Public note Libro electrónico
Uniform Resource Identifier http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-97-1025-6
912 ## -
-- ZDB-2-SCS
912 ## -
-- ZDB-2-SXCS
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Libro Electrónico
Existencias
Estado de retiro Colección Ubicación permanente Ubicación actual Fecha de ingreso Total Checkouts Date last seen Número de copia Tipo de material
  Colección de Libros Electrónicos Biblioteca Electrónica Biblioteca Electrónica 16/05/2025   16/05/2025 1 Libro Electrónico

Con tecnología Koha