MARC details
000 -LIDER |
fixed length control field |
04709nam a22006015i 4500 |
001 - CONTROL NUMBER |
control field |
978-981-99-2096-9 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
DE-He213 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250516160036.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr nn 008mamaa |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240517s2024 si | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9789819920969 |
-- |
978-981-99-2096-9 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
Q334-342 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
TA347.A78 |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYQ |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
COM004000 |
Source |
bisacsh |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYQ |
Source |
thema |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
006.3 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Saxena, Dhish Kumar. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
245 10 - TITLE STATEMENT |
Title |
Machine Learning Assisted Evolutionary Multi- and Many- Objective Optimization |
Medium |
[electronic resource] / |
Statement of responsibility, etc. |
by Dhish Kumar Saxena, Sukrit Mittal, Kalyanmoy Deb, Erik D. Goodman. |
250 ## - EDITION STATEMENT |
Edition statement |
1st ed. 2024. |
264 #1 - |
-- |
Singapore : |
-- |
Springer Nature Singapore : |
-- |
Imprint: Springer, |
-- |
2024. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
XV, 244 p. 83 illus., 53 illus. in color. |
Other physical details |
online resource. |
336 ## - |
-- |
text |
-- |
txt |
-- |
rdacontent |
337 ## - |
-- |
computer |
-- |
c |
-- |
rdamedia |
338 ## - |
-- |
online resource |
-- |
cr |
-- |
rdacarrier |
347 ## - |
-- |
text file |
-- |
PDF |
-- |
rda |
490 1# - SERIES STATEMENT |
Series statement |
Genetic and Evolutionary Computation, |
International Standard Serial Number |
1932-0175 |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Introduction -- Optimization Problems and Algorithms -- Existing Machine Learning Studies on Multi-objective Optimization -- Learning to Converge Better and Faster -- Learning to Diversify Better and Faster -- Learning to Simultaneously Converge and Diversify Better and Faster -- Learning to Understand the Problem Structure -- ML-Assisted Analysis of Pareto-optimal Front -- Further Machine Learning Assisted Enhancements -- Conclusions. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
This book focuses on machine learning (ML) assisted evolutionary multi- and many-objective optimization (EMâO). EMâO algorithms, namely EMâOAs, iteratively evolve a set of solutions towards a good Pareto Front approximation. The availability of multiple solution sets over successive generations makes EMâOAs amenable to application of ML for different pursuits. Recognizing the immense potential for ML-based enhancements in the EMâO domain, this book intends to serve as an exclusive resource for both domain novices and the experienced researchers and practitioners. To achieve this goal, the book first covers the foundations of optimization, including problem and algorithm types. Then, well-structured chapters present some of the key studies on ML-based enhancements in the EMâO domain, systematically addressing important aspects. These include learning to understand the problem structure, converge better, diversify better, simultaneously converge and diversify better, and analyze the Pareto Front. In doing so, this book broadly summarizes the literature, beginning with foundational work on innovization (2003) and objective reduction (2006), and extending to the most recently proposed innovized progress operators (2021-23). It also highlights the utility of ML interventions in the search, post-optimality, and decision-making phases pertaining to the use of EMâOAs. Finally, this book shares insightful perspectives on the future potential for ML based enhancements in the EMâOA domain. To aid readers, the book includes working codes for the developed algorithms. This book will not only strengthen this emergent theme but also encourage ML researchers to develop more efficient and scalable methods that cater to the requirements of the EMâOA domain. It serves as an inspiration for further research and applications at the synergistic intersection of EMâOA and ML domains. |
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE |
Owner |
UABC ; |
Method of acquisition |
Perpetuidad |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Artificial intelligence. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Machine learning. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computational intelligence. |
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Artificial Intelligence. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Machine Learning. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computational Intelligence. |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Mittal, Sukrit. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Deb, Kalyanmoy. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
700 1# - ADDED ENTRY--PERSONAL NAME |
Personal name |
Goodman, Erik D. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
710 2# - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
SpringerLink (Online service) |
773 0# - HOST ITEM ENTRY |
Title |
Springer Nature eBook |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9789819920952 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9789819920976 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9789819920983 |
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE |
Uniform title |
Genetic and Evolutionary Computation, |
-- |
1932-0175 |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Public note |
Libro electrónico |
Uniform Resource Identifier |
http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-99-2096-9 |
912 ## - |
-- |
ZDB-2-SCS |
912 ## - |
-- |
ZDB-2-SXCS |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Libro Electrónico |