MARC details
000 -LIDER |
fixed length control field |
05209nam a22006135i 4500 |
001 - CONTROL NUMBER |
control field |
978-3-031-57549-5 |
003 - CONTROL NUMBER IDENTIFIER |
control field |
DE-He213 |
005 - DATE AND TIME OF LATEST TRANSACTION |
control field |
20250516160101.0 |
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION |
fixed length control field |
cr nn 008mamaa |
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION |
fixed length control field |
240709s2024 sz | s |||| 0|eng d |
020 ## - INTERNATIONAL STANDARD BOOK NUMBER |
International Standard Book Number |
9783031575495 |
-- |
978-3-031-57549-5 |
050 #4 - LIBRARY OF CONGRESS CALL NUMBER |
Classification number |
QA76.9.N38 |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYQL |
Source |
bicssc |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
COM073000 |
Source |
bisacsh |
072 #7 - SUBJECT CATEGORY CODE |
Subject category code |
UYQL |
Source |
thema |
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER |
Classification number |
006.35 |
Edition number |
23 |
100 1# - MAIN ENTRY--PERSONAL NAME |
Personal name |
Nugues, Pierre M. |
Relator term |
author. |
Relator code |
aut |
-- |
http://id.loc.gov/vocabulary/relators/aut |
245 10 - TITLE STATEMENT |
Title |
Python for Natural Language Processing |
Medium |
[electronic resource] : |
Remainder of title |
Programming with NumPy, scikit-learn, Keras, and PyTorch / |
Statement of responsibility, etc. |
by Pierre M. Nugues. |
250 ## - EDITION STATEMENT |
Edition statement |
3rd ed. 2024. |
264 #1 - |
-- |
Cham : |
-- |
Springer Nature Switzerland : |
-- |
Imprint: Springer, |
-- |
2024. |
300 ## - PHYSICAL DESCRIPTION |
Extent |
XXV, 520 p. 89 illus., 53 illus. in color. |
Other physical details |
online resource. |
336 ## - |
-- |
text |
-- |
txt |
-- |
rdacontent |
337 ## - |
-- |
computer |
-- |
c |
-- |
rdamedia |
338 ## - |
-- |
online resource |
-- |
cr |
-- |
rdacarrier |
347 ## - |
-- |
text file |
-- |
PDF |
-- |
rda |
490 1# - SERIES STATEMENT |
Series statement |
Cognitive Technologies, |
International Standard Serial Number |
2197-6635 |
505 0# - FORMATTED CONTENTS NOTE |
Formatted contents note |
Preface to the third edition -- Preface to the second edition -- Preface to the first edition -- 1. An Overview of Language Processing -- 2. A Tour of Python -- 3. Corpus Processing Tools -- 4. Encoding and Annotation Scheme -- 5. Python for Numerical Computations -- 6. Topics in Information Theory and Machine Learning -- 7. Linear and Logistic Regression -- 8. Neural Networks -- 9. Counting and Indexing Words -- 10. Dense Vector Representations -- 11. Word Sequences -- 12. Words, Parts of Speech, and Morphology -- 13. Subword Segmentation -- 14. Part-of-Speech and Sequence Annotation -- 15. Self-Attention and Transformers -- 16. Pretraining an Encoder: The BERT Language Model -- 17. Sequence-to-Sequence Architectures: Encoder-Decoders and Decoders -- Index -- References. |
520 ## - SUMMARY, ETC. |
Summary, etc. |
Since the last edition of this book (2014), progress has been astonishing in all areas of Natural Language Processing, with recent achievements in Text Generation that spurred a media interest going beyond the traditional academic circles. Text Processing has meanwhile become a mainstream industrial tool that is used, to various extents, by countless companies. As such, a revision of this book was deemed necessary to catch up with the recent breakthroughs, and the author discusses models and architectures that have been instrumental in the recent progress of Natural Language Processing. As in the first two editions, the intention is to expose the reader to the theories used in Natural Language Processing, and to programming examples that are essential for a deep understanding of the concepts. Although present in the previous two editions, Machine Learning is now even more pregnant, having replaced many of the earlier techniques to process text. Many new techniques build on the availability of text. Using Python notebooks, the reader will be able to load small corpora, format text, apply the models through executing pieces of code, gradually discover the theoretical parts by possibly modifying the code or the parameters, and traverse theories and concrete problems through a constant interaction between the user and the machine. The data sizes and hardware requirements are kept to a reasonable minimum so that a user can see instantly, or at least quickly, the results of most experiments on most machines. The book does not assume a deep knowledge of Python, and an introduction to this language aimed at Text Processing is given in Ch. 2, which will enable the reader to touch all the programming concepts, including NumPy arrays and PyTorch tensors as fundamental structures to represent and process numerical data in Python, or Keras for training Neural Networks to classify texts. Covering topics like Word Segmentation and Part-of-Speech and Sequence Annotation, the textbook also gives an in-depth overview of Transformers (for instance, BERT), Self-Attention and Sequence-to-Sequence Architectures. . |
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE |
Owner |
UABC ; |
Method of acquisition |
Perpetuidad |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Natural language processing (Computer science). |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computational linguistics. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Python (Computer program language). |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Artificial intelligence. |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
User interfaces (Computer systems). |
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Human-computer interaction. |
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Natural Language Processing (NLP). |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Computational Linguistics. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Python. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
Artificial Intelligence. |
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM |
Término temático o nombre geográfico como elemento de entrada |
User Interfaces and Human Computer Interaction. |
710 2# - ADDED ENTRY--CORPORATE NAME |
Corporate name or jurisdiction name as entry element |
SpringerLink (Online service) |
773 0# - HOST ITEM ENTRY |
Title |
Springer Nature eBook |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031575488 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031575501 |
776 08 - ADDITIONAL PHYSICAL FORM ENTRY |
Relationship information |
Printed edition: |
International Standard Book Number |
9783031575518 |
830 #0 - SERIES ADDED ENTRY--UNIFORM TITLE |
Uniform title |
Cognitive Technologies, |
-- |
2197-6635 |
856 40 - ELECTRONIC LOCATION AND ACCESS |
Public note |
Libro electrónico |
Uniform Resource Identifier |
http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-3-031-57549-5 |
912 ## - |
-- |
ZDB-2-SCS |
912 ## - |
-- |
ZDB-2-SXCS |
942 ## - ADDED ENTRY ELEMENTS (KOHA) |
Koha item type |
Libro Electrónico |