Reinforcement Learning (Registro nro. 276552)

MARC details
000 -LIDER
fixed length control field 03602nam a22005295i 4500
001 - CONTROL NUMBER
control field 978-981-19-4933-3
003 - CONTROL NUMBER IDENTIFIER
control field DE-He213
005 - DATE AND TIME OF LATEST TRANSACTION
control field 20250516160144.0
007 - PHYSICAL DESCRIPTION FIXED FIELD--GENERAL INFORMATION
fixed length control field cr nn 008mamaa
008 - FIXED-LENGTH DATA ELEMENTS--GENERAL INFORMATION
fixed length control field 240928s2024 si | s |||| 0|eng d
020 ## - INTERNATIONAL STANDARD BOOK NUMBER
International Standard Book Number 9789811949333
-- 978-981-19-4933-3
050 #4 - LIBRARY OF CONGRESS CALL NUMBER
Classification number Q325.5-.7
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYQM
Source bicssc
072 #7 - SUBJECT CATEGORY CODE
Subject category code MAT029000
Source bisacsh
072 #7 - SUBJECT CATEGORY CODE
Subject category code UYQM
Source thema
082 04 - DEWEY DECIMAL CLASSIFICATION NUMBER
Classification number 006.31
Edition number 23
100 1# - MAIN ENTRY--PERSONAL NAME
Personal name Xiao, Zhiqing.
Relator term author.
Authority record control number (orcid)0000-0001-5207-638X
-- https://orcid.org/0000-0001-5207-638X
Relator code aut
-- http://id.loc.gov/vocabulary/relators/aut
245 10 - TITLE STATEMENT
Title Reinforcement Learning
Medium [electronic resource] :
Remainder of title Theory and Python Implementation /
Statement of responsibility, etc. by Zhiqing Xiao.
250 ## - EDITION STATEMENT
Edition statement 1st ed. 2024.
264 #1 -
-- Singapore :
-- Springer Nature Singapore :
-- Imprint: Springer,
-- 2024.
300 ## - PHYSICAL DESCRIPTION
Extent XXII, 559 p. 61 illus., 60 illus. in color.
Other physical details online resource.
336 ## -
-- text
-- txt
-- rdacontent
337 ## -
-- computer
-- c
-- rdamedia
338 ## -
-- online resource
-- cr
-- rdacarrier
347 ## -
-- text file
-- PDF
-- rda
505 0# - FORMATTED CONTENTS NOTE
Formatted contents note Chapter 1. Introduction of Reinforcement Learning (RL) -- Chapter 2. MDP: Markov Decision Process -- Chapter 3. Model-based Numerical Iteration -- Chapter 4. MC: Monte Carlo Learning -- Chapter 5. TD: Temporal Difference Learning -- Chapter 6. Function Approximation -- Chapter 7. PG: Policy Gradient -- Chapter 8. AC: Actor-Critic -- Chapter 9. DPG: Deterministic Policy Gradient -- Chapter 10. Maximum-Entropy RL -- Chapter 11. Policy-based Gradient-Free Algorithms -- Chapter 12. Distributional RL -- Chapter 13. Minimize Regret -- Chapter 14. Tree Search -- Chapter 15. More Agent-Environment Interfaces -- Chapter 16. Learn from Feedback and Imitation Learning.
520 ## - SUMMARY, ETC.
Summary, etc. Reinforcement Learning: Theory and Python Implementation is a tutorial book on reinforcement learning, with explanations of both theory and applications. Starting from a uniform mathematical framework, this book derives the theory of modern reinforcement learning systematically and introduces all mainstream reinforcement learning algorithms such as PPO, SAC, and MuZero. It also covers key technologies of GPT training such as RLHF, IRL, and PbRL. Every chapter is accompanied by high-quality implementations, and all implementations of deep reinforcement learning algorithms are with both TensorFlow and PyTorch. Codes can be found on GitHub along with their results and are runnable on a conventional laptop with either Windows, macOS, or Linux. This book is intended for readers who want to learn reinforcement learning systematically and apply reinforcement learning to practical applications. It is also ideal to academical researchers who seek theoretical foundation or algorithm enhancement in their cutting-edge AI research.
541 ## - IMMEDIATE SOURCE OF ACQUISITION NOTE
Owner UABC ;
Method of acquisition Perpetuidad
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Machine learning.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Artificial intelligence.
650 #0 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Robotics.
650 14 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Machine Learning.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Artificial Intelligence.
650 24 - SUBJECT ADDED ENTRY--TOPICAL TERM
Término temático o nombre geográfico como elemento de entrada Robotics.
710 2# - ADDED ENTRY--CORPORATE NAME
Corporate name or jurisdiction name as entry element SpringerLink (Online service)
773 0# - HOST ITEM ENTRY
Title Springer Nature eBook
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9789811949326
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9789811949340
776 08 - ADDITIONAL PHYSICAL FORM ENTRY
Relationship information Printed edition:
International Standard Book Number 9789811949357
856 40 - ELECTRONIC LOCATION AND ACCESS
Public note Libro electrónico
Uniform Resource Identifier http://libcon.rec.uabc.mx:2048/login?url=https://doi.org/10.1007/978-981-19-4933-3
912 ## -
-- ZDB-2-SCS
912 ## -
-- ZDB-2-SXCS
942 ## - ADDED ENTRY ELEMENTS (KOHA)
Koha item type Libro Electrónico
Existencias
Estado de retiro Colección Ubicación permanente Ubicación actual Fecha de ingreso Total Checkouts Date last seen Número de copia Tipo de material
  Colección de Libros Electrónicos Biblioteca Electrónica Biblioteca Electrónica 16/05/2025   16/05/2025 1 Libro Electrónico

Con tecnología Koha