Bioinstrumentation [recurso electrónico] / John D. Enderle.

Por: Enderle, John D. (John Denis)Tipo de material: TextoTextoSeries Synthesis lectures on biomedical engineering (Online) ; #6.Detalles de publicación: [San Rafael, Calif.] : Morgan & Claypool Publishers, c2006Edición: 1st edDescripción: 1 online resource (vii, 212 p.)ISBN: 1598291335 (ebook); 9781598291339 (ebook); 1598291327 (pbk.); 9781598291322 (pbk.)Tema(s): Biomedical Engineering -- instrumentation | Electronics, Medical -- instrumentation | Medical instruments and apparatus | Biomedical engineering -- Instruments | Electric circuits | MEDICAL / Instruments & SuppliesGénero/Forma: Electronic books.Clasificación CDD: 610.28/4 Clasificación LoC:QH324.42 | .E64 2006Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction -- Basic bioinstrumentation system -- Charge, current, voltage, power and energy -- Charge -- Current -- Voltage -- Power and energy -- Sources -- Resistance -- Resistors -- Power -- Equivalent resistance -- Series and parallel combinations of resistance -- Voltage and current divider rules -- Linear network analysis -- Node-voltage method -- Mesh-current method -- Linearity, superposition and source transformations -- Thevenin's and Norton's theorems -- Thevenin's theorem -- Norton's theorem -- Dependent sources and Thevenin and Norton equivalent circuits -- Inductors -- Power and energy -- Capacitors -- Power and energy -- Inductance and capacitance combinations -- General approach to solving circuits involving resistors, capacitors and inductors -- Discontinuities and initial conditions in a circuit -- Circuits with switches -- Operational amplifiers --Voltage characteristics of the Op amp -- Time-varying signals -- Phasors -- Passive circuit elements in the phasor domain -- Kirchhoff's laws and other techniques in the phasor domain -- Active analog filters -- Bioinstrumentation design -- Noise --Computers -- Exercises.
Resumen: This short book provides basic information about bioinstrumentation and electric circuit theory. Many biomedical instruments use a transducer or sensor to convert a signal created by the body into an electric signal. Our goal here is to develop expertise in electric circuit theory applied to bioinstrumentation. We begin with a description of variables used in circuit theory, charge, current, voltage, power and energy. Next, Kirchhoff's current and voltage laws are introduced, followed by resistance, simplifications of resistive circuits and voltage and current calculations. Circuit analysis techniques are then presented, followed by inductance and capacitance, and solutions of circuits using the differential equation method. Finally, the operational amplifier and time varying signals are introduced. This lecture is written for a student or researcher or engineer who has completed the first two years of an engineering program (i.e., 3 semesters of calculus and differential equations). A considerable effort has been made to develop the theory in a logical manner developing special mathematical skills as needed. At the end of the short book is a wide selection of problems, ranging from simple to complex.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QH324.42 .E64 2006 (Browse shelf(Abre debajo)) 1 No para préstamo 369596-2001

Title from PDF t.p. (viewed Nov. 2, 2006).

Introduction -- Basic bioinstrumentation system -- Charge, current, voltage, power and energy -- Charge -- Current -- Voltage -- Power and energy -- Sources -- Resistance -- Resistors -- Power -- Equivalent resistance -- Series and parallel combinations of resistance -- Voltage and current divider rules -- Linear network analysis -- Node-voltage method -- Mesh-current method -- Linearity, superposition and source transformations -- Thevenin's and Norton's theorems -- Thevenin's theorem -- Norton's theorem -- Dependent sources and Thevenin and Norton equivalent circuits -- Inductors -- Power and energy -- Capacitors -- Power and energy -- Inductance and capacitance combinations -- General approach to solving circuits involving resistors, capacitors and inductors -- Discontinuities and initial conditions in a circuit -- Circuits with switches -- Operational amplifiers --Voltage characteristics of the Op amp -- Time-varying signals -- Phasors -- Passive circuit elements in the phasor domain -- Kirchhoff's laws and other techniques in the phasor domain -- Active analog filters -- Bioinstrumentation design -- Noise --Computers -- Exercises.

This short book provides basic information about bioinstrumentation and electric circuit theory. Many biomedical instruments use a transducer or sensor to convert a signal created by the body into an electric signal. Our goal here is to develop expertise in electric circuit theory applied to bioinstrumentation. We begin with a description of variables used in circuit theory, charge, current, voltage, power and energy. Next, Kirchhoff's current and voltage laws are introduced, followed by resistance, simplifications of resistive circuits and voltage and current calculations. Circuit analysis techniques are then presented, followed by inductance and capacitance, and solutions of circuits using the differential equation method. Finally, the operational amplifier and time varying signals are introduced. This lecture is written for a student or researcher or engineer who has completed the first two years of an engineering program (i.e., 3 semesters of calculus and differential equations). A considerable effort has been made to develop the theory in a logical manner developing special mathematical skills as needed. At the end of the short book is a wide selection of problems, ranging from simple to complex.

Includes bibliographical references.

19

Con tecnología Koha