A first course in fourier analysis [recurso electrónico] / David W. Kammler.
Tipo de material: TextoDetalles de publicación: New York : Cambridge University Press, 2007Edición: 2nd edDescripción: 1 online resource (xvii, 798, A1-A37, I1-I7 p.)ISBN: 9780511378690 (electronic bk.); 0511378696 (electronic bk.)Tema(s): Fourier analysis | MATHEMATICS -- Infinity | Fourier analysisFormatos físicos adicionales: Print version:: First course in fourier analysis.Clasificación CDD: 515/.2433 Clasificación LoC:QA403.5 | .K36 2007ebRecursos en línea: Libro electrónico Resumen: "This unique book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others."--Publisher.Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA403.5 .K36 2007 EB (Browse shelf(Abre debajo)) | 1 | No para préstamo | 369676-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA403 -403.3 Harmonic Analysis of Operators on Hilbert Space | QA403 -403.3 Convolution Operators on Groups | QA403.5 .H69 2001 Principles of Fourier analysis | QA403.5 .K36 2007 EB A first course in fourier analysis | QA403.5 -404.5 Wavelets and Multiscale Analysis | QA403.5 -404.5 Fourier Integral Operators | QA403.5 -404.5 Discrete Fourier Analysis |
Includes bibliographical references and index.
"This unique book provides a meaningful resource for applied mathematics through Fourier analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analysis, the fast Fourier transform, and a powerful elementary theory of generalized functions and shows how these mathematical ideas can be used to study sampling theory, PDEs, probability, diffraction, musical tones, and wavelets. The book contains an unusually complete presentation of the Fourier transform calculus. It uses concepts from calculus to present an elementary theory of generalized functions. FT calculus and generalized functions are then used to study the wave equation, diffusion equation, and diffraction equation. Real-world applications of Fourier analysis are described in the chapter on musical tones. A valuable reference on Fourier analysis for a variety of students and scientific professionals, including mathematicians, physicists, chemists, geologists, electrical engineers, mechanical engineers, and others."--Publisher.
Description based on print version record.