Nonlinear Partial Differential Equations [recurso electrónico] : Asymptotic Behavior of Solutions and Self-Similar Solutions / by Mi-Ho Giga, Yoshikazu Giga, Jürgen Saal.

Por: Giga, Mi-Ho [author.]Colaborador(es): Giga, Yoshikazu [author.] | Saal, Jürgen [author.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Progress in Nonlinear Differential Equations and Their Applications ; 79Editor: Boston : Birkhäuser Boston, 2010Descripción: XVIII, 294p. 7 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780817646516Tema(s): Mathematics | Global analysis (Mathematics) | Functional analysis | Differential equations, partial | Mathematics | Partial Differential Equations | Functional Analysis | Analysis | Approximations and ExpansionsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 515.353 Clasificación LoC:QA370-380Recursos en línea: Libro electrónicoTexto
Contenidos:
Asymptotic Behavior of Solutions of Partial Differential Equations -- Behavior Near Time Infinity of Solutions of the Heat Equation -- Behavior Near Time Infinity of Solutions of the Vorticity Equations -- Self-Similar Solutions for Various Equations -- Useful Analytic Tools -- Various Properties of Solutions of the Heat Equation -- Compactness Theorems -- Calculus Inequalities -- Convergence Theorems in the Theory of Integration.
En: Springer eBooksResumen: The main focus of this textbook, in two parts, is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. The exposition moves systematically from the basic to more sophisticated concepts with recent developments and several open problems. With challenging exercises, examples, and illustrations to help explain the rigorous analytic basis for the Navier–-Stokes equations, mean curvature flow equations, and other important equations describing real phenomena, this book is written for graduate students and researchers, not only in mathematics but also in other disciplines. Nonlinear Partial Differential Equations will serve as an excellent textbook for a first course in modern analysis or as a useful self-study guide. Key topics in nonlinear partial differential equations as well as several fundamental tools and methods are presented. The only prerequisite required is a basic course in calculus.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA370 -380 (Browse shelf(Abre debajo)) 1 No para préstamo 370393-2001

Asymptotic Behavior of Solutions of Partial Differential Equations -- Behavior Near Time Infinity of Solutions of the Heat Equation -- Behavior Near Time Infinity of Solutions of the Vorticity Equations -- Self-Similar Solutions for Various Equations -- Useful Analytic Tools -- Various Properties of Solutions of the Heat Equation -- Compactness Theorems -- Calculus Inequalities -- Convergence Theorems in the Theory of Integration.

The main focus of this textbook, in two parts, is on showing how self-similar solutions are useful in studying the behavior of solutions of nonlinear partial differential equations, especially those of parabolic type. The exposition moves systematically from the basic to more sophisticated concepts with recent developments and several open problems. With challenging exercises, examples, and illustrations to help explain the rigorous analytic basis for the Navier–-Stokes equations, mean curvature flow equations, and other important equations describing real phenomena, this book is written for graduate students and researchers, not only in mathematics but also in other disciplines. Nonlinear Partial Differential Equations will serve as an excellent textbook for a first course in modern analysis or as a useful self-study guide. Key topics in nonlinear partial differential equations as well as several fundamental tools and methods are presented. The only prerequisite required is a basic course in calculus.

19

Con tecnología Koha