Heat Kernels for Elliptic and Sub-elliptic Operators [recurso electrónico] : Methods and Techniques / by Ovidiu Calin, Der-Chen Chang, Kenro Furutani, Chisato Iwasaki.
Tipo de material: TextoSeries Applied and Numerical Harmonic AnalysisEditor: Boston : Birkhäuser Boston, 2011Edición: 1Descripción: XVIII, 436p. 25 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780817649951Tema(s): Mathematics | Harmonic analysis | Operator theory | Differential equations, partial | Global differential geometry | Distribution (Probability theory) | Mathematical physics | Mathematics | Partial Differential Equations | Mathematical Methods in Physics | Operator Theory | Differential Geometry | Probability Theory and Stochastic Processes | Abstract Harmonic AnalysisFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 515.353 Clasificación LoC:QA370-380Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA370 -380 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 370436-2001 |
Part I. Traditional Methods for Computing Heat Kernels -- Introduction -- Stochastic Analysis Method -- A Brief Introduction to Calculus of Variations -- The Path Integral Approach -- The Geometric Method -- Commuting Operators -- Fourier Transform Method -- The Eigenfunctions Expansion Method -- Part II. Heat Kernel on Nilpotent Lie Groups and Nilmanifolds -- Laplacians and Sub-Laplacians -- Heat Kernels for Laplacians and Step 2 Sub-Laplacians -- Heat Kernel for Sub-Laplacian on the Sphere S^3 -- Part III. Laguerre Calculus and Fourier Method -- Finding Heat Kernels by Using Laguerre Calculus -- Constructing Heat Kernel for Degenerate Elliptic Operators -- Heat Kernel for the Kohn Laplacian on the Heisenberg Group -- Part IV. Pseudo-Differential Operators -- The Psuedo-Differential Operators Technique -- Bibliography -- Index.
This monograph is a unified presentation of several theories of finding explicit formulas for heat kernels for both elliptic and sub-elliptic operators. These kernels are important in the theory of parabolic operators because they describe the distribution of heat on a given manifold as well as evolution phenomena and diffusion processes. The work is divided into four main parts: Part I treats the heat kernel by traditional methods, such as the Fourier transform method, paths integrals, variational calculus, and eigenvalue expansion; Part II deals with the heat kernel on nilpotent Lie groups and nilmanifolds; Part III examines Laguerre calculus applications; Part IV uses the method of pseudo-differential operators to describe heat kernels. Topics and features: •comprehensive treatment from the point of view of distinct branches of mathematics, such as stochastic processes, differential geometry, special functions, quantum mechanics, and PDEs; •novelty of the work is in the diverse methods used to compute heat kernels for elliptic and sub-elliptic operators; •most of the heat kernels computable by means of elementary functions are covered in the work; •self-contained material on stochastic processes and variational methods is included. Heat Kernels for Elliptic and Sub-elliptic Operators is an ideal reference for graduate students, researchers in pure and applied mathematics, and theoretical physicists interested in understanding different ways of approaching evolution operators.
19