An Introduction to Nonlinear Functional Analysis and Elliptic Problems [recurso electrónico] / by Antonio Ambrosetti, David Arcoya.
Tipo de material: TextoSeries Progress in Nonlinear Differential Equations and Their Applications ; 82Editor: Boston : Birkhäuser Boston, 2011Descripción: XII, 199p. 12 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780817681142Tema(s): Mathematics | Differentiable dynamical systems | Functional analysis | Differential equations, partial | Mathematics | Functional Analysis | Partial Differential Equations | Dynamical Systems and Ergodic TheoryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 515.7 Clasificación LoC:QA319-329.9Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA319 -329.9 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 370446-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA319 -329.9 The Mathematics of Medical Imaging | QA319 -329.9 Spectral Methods in Surface Superconductivity | QA319 -329.9 Functions, Spaces, and Expansions | QA319 -329.9 An Introduction to Nonlinear Functional Analysis and Elliptic Problems | QA319 -329.9 Many-Body Boson Systems | QA319 -329.9 Non-commutative Gelfand Theories | QA319 -329.9 Concrete Functional Calculus |
Notation -- Preliminaries -- Some Fixed Point Theorems -- Local and Global Inversion Theorems -- Leray-Schauder Topological Degree -- An Outline of Critical Points -- Bifurcation Theory -- Elliptic Problems and Functional Analysis -- Problems with A Priori Bounds -- Asymptotically Linear Problems -- Asymmetric Nonlinearities -- Superlinear Problems -- Quasilinear Problems -- Stationary States of Evolution Equations -- Appendix A Sobolev Spaces -- Exercises -- Index -- Bibliography.
This self-contained textbook provides the basic, abstract tools used in nonlinear analysis and their applications to semilinear elliptic boundary value problems. By first outlining the advantages and disadvantages of each method, this comprehensive text displays how various approaches can easily be applied to a range of model cases. An Introduction to Nonlinear Functional Analysis and Elliptic Problems is divided into two parts: the first discusses key results such as the Banach contraction principle, a fixed point theorem for increasing operators, local and global inversion theory, Leray–Schauder degree, critical point theory, and bifurcation theory; the second part shows how these abstract results apply to Dirichlet elliptic boundary value problems. The exposition is driven by numerous prototype problems and exposes a variety of approaches to solving them. Complete with a preliminary chapter, an appendix that includes further results on weak derivatives, and chapter-by-chapter exercises, this book is a practical text for an introductory course or seminar on nonlinear functional analysis.
19