Stabilization of Navier–Stokes Flows [recurso electrónico] / by Viorel Barbu.

Por: Barbu, Viorel [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Communications and Control EngineeringEditor: London : Springer London : Imprint: Springer, 2011Descripción: XII, 276 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780857290434Tema(s): Engineering | Differential equations, partial | Systems theory | Hydraulic engineering | Engineering | Control | Systems Theory, Control | Fluid- and Aerodynamics | Partial Differential Equations | Engineering Fluid DynamicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 629.8 Clasificación LoC:TJ212-225Recursos en línea: Libro electrónicoTexto
Contenidos:
Preliminaries -- Stabilization of Abstract Parabolic Systems -- Stabilization of Navier–Stokes Flows -- Stabilization by Noise of Navier–Stokes Equations -- Robust Stabilization of the Navier–Stokes Equation via the H-infinity Control Theory.
En: Springer eBooksResumen: Stabilization of Navier–Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier–Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The text treats the questions: • What is the structure of the stabilizing feedback controller? • How can it be designed using a minimal set of eigenfunctions of the Stokes–Oseen operator? The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader’s task of application easier still. Stabilization of Navier–Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier–Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular. The chief points of linear functional analysis, linear algebra, probability theory and general variational theory of elliptic, parabolic and Navier–Stokes equations are reviewed in an introductory chapter and at the end of chapters 3 and 4.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos TJ212 -225 (Browse shelf(Abre debajo)) 1 No para préstamo 370466-2001

Preliminaries -- Stabilization of Abstract Parabolic Systems -- Stabilization of Navier–Stokes Flows -- Stabilization by Noise of Navier–Stokes Equations -- Robust Stabilization of the Navier–Stokes Equation via the H-infinity Control Theory.

Stabilization of Navier–Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier–Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The text treats the questions: • What is the structure of the stabilizing feedback controller? • How can it be designed using a minimal set of eigenfunctions of the Stokes–Oseen operator? The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader’s task of application easier still. Stabilization of Navier–Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier–Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular. The chief points of linear functional analysis, linear algebra, probability theory and general variational theory of elliptic, parabolic and Navier–Stokes equations are reviewed in an introductory chapter and at the end of chapters 3 and 4.

19

Con tecnología Koha