Non-commutative Gelfand Theories [recurso electrónico] : A Tool-kit for Operator Theorists and Numerical Analysts / by Steffen Roch, Pedro A. Santos, Bernd Silbermann.
Tipo de material: TextoSeries UniversitextEditor: London : Springer London, 2011Descripción: XIV, 383p. 14 illus., 2 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780857291837Tema(s): Mathematics | Fourier analysis | Functional analysis | Integral equations | Operator theory | Numerical analysis | Mathematics | Functional Analysis | Numerical Analysis | Integral Equations | Operator Theory | Fourier AnalysisFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 515.7 Clasificación LoC:QA319-329.9Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA319 -329.9 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 370509-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA319 -329.9 Functions, Spaces, and Expansions | QA319 -329.9 An Introduction to Nonlinear Functional Analysis and Elliptic Problems | QA319 -329.9 Many-Body Boson Systems | QA319 -329.9 Non-commutative Gelfand Theories | QA319 -329.9 Concrete Functional Calculus | QA319 -329.9 Banach Space Theory | QA319 -329.9 Descriptive Topology in Selected Topics of Functional Analysis |
Banach algebras -- Local principles -- Banach algebras generated by idempotents -- Singular integral operators -- Convolution operators -- Algebras of operator sequences.
Written as a hybrid between a research monograph and a textbook the first half of this book is concerned with basic concepts for the study of Banach algebras that, in a sense, are not too far from being commutative. Essentially, the algebra under consideration either has a sufficiently large center or is subject to a higher order commutator property (an algebra with a so-called polynomial identity or in short: Pl-algebra). In the second half of the book, a number of selected examples are used to demonstrate how this theory can be successfully applied to problems in operator theory and numerical analysis. Distinguished by the consequent use of local principles (non-commutative Gelfand theories), PI-algebras, Mellin techniques and limit operator techniques, each one of the applications presented in chapters 4, 5 and 6 forms a theory that is up to modern standards and interesting in its own right. Written in a way that can be worked through by the reader with fundamental knowledge of analysis, functional analysis and algebra, this book will be accessible to 4th year students of mathematics or physics whilst also being of interest to researchers in the areas of operator theory, numerical analysis, and the general theory of Banach algebras.
19