On Normalized Integral Table Algebras (Fusion Rings) [recurso electrónico] : Generated by a Faithful Non-real Element of Degree 3 / by Zvi Arad, Xu Bangteng, Guiyun Chen, Effi Cohen, Arisha Haj Ihia Hussam, Mikhail Muzychuk.

Por: Arad, Zvi [author.]Colaborador(es): Bangteng, Xu [author.] | Chen, Guiyun [author.] | Cohen, Effi [author.] | Haj Ihia Hussam, Arisha [author.] | Muzychuk, Mikhail [author.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Algebra and Applications ; 16Editor: London : Springer London : Imprint: Springer, 2011Descripción: X, 274 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9780857298508Tema(s): Mathematics | Algebra | Group theory | Combinatorics | Mathematics | Algebra | Commutative Rings and Algebras | Group Theory and Generalizations | Combinatorics | Graph TheoryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 512 Clasificación LoC:QA150-272Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction -- Splitting the Main Problem into Four Sub-cases -- A Proof of a Non-existence Sub-case (2) -- Preliminary Classification of Sub-case (2) -- Finishing the Proofs of the Main Results.
En: Springer eBooksResumen: The theory of table algebras was introduced in 1991 by Z. Arad and H.Blau in order to treat, in a uniform way, products of conjugacy classes and irreducible characters of finite groups.  Today, table algebra theory is a well-established branch of modern algebra with various applications, including  the representation theory of finite groups, algebraic combinatorics and fusion rules algebras. This book presents the latest developments in this area.  Its main goal is to  give a classification of the Normalized Integral Table Algebras (Fusion Rings) generated by a faithful non-real element of degree 3. Divided into 4 parts, the first gives an outline of the classification approach, while remaining parts separately treat special cases that appear during classification. A particularly unique contribution to the field, can be found in part four, whereby a number of the algebras are linked to the polynomial irreducible representations of the group SL3(C). This book will be of interest to research mathematicians and PhD students working in table algebras, group representation theory, algebraic combinatorics and integral fusion rule algebras.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA150 -272 (Browse shelf(Abre debajo)) 1 No para préstamo 370644-2001

Introduction -- Splitting the Main Problem into Four Sub-cases -- A Proof of a Non-existence Sub-case (2) -- Preliminary Classification of Sub-case (2) -- Finishing the Proofs of the Main Results.

The theory of table algebras was introduced in 1991 by Z. Arad and H.Blau in order to treat, in a uniform way, products of conjugacy classes and irreducible characters of finite groups.  Today, table algebra theory is a well-established branch of modern algebra with various applications, including  the representation theory of finite groups, algebraic combinatorics and fusion rules algebras. This book presents the latest developments in this area.  Its main goal is to  give a classification of the Normalized Integral Table Algebras (Fusion Rings) generated by a faithful non-real element of degree 3. Divided into 4 parts, the first gives an outline of the classification approach, while remaining parts separately treat special cases that appear during classification. A particularly unique contribution to the field, can be found in part four, whereby a number of the algebras are linked to the polynomial irreducible representations of the group SL3(C). This book will be of interest to research mathematicians and PhD students working in table algebras, group representation theory, algebraic combinatorics and integral fusion rule algebras.

19

Con tecnología Koha