Around the Research of Vladimir Maz'ya I [recurso electrónico] : Function Spaces / edited by Ari Laptev.
Tipo de material: TextoSeries International Mathematical Series ; 11Editor: New York, NY : Springer New York, 2010Edición: 1Descripción: XXII, 398p. 3 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781441913418Tema(s): Mathematics | Global analysis (Mathematics) | Functional analysis | Differential equations, partial | Mathematics | Analysis | Partial Differential Equations | Functional Analysis | Approximations and ExpansionsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 515 Clasificación LoC:QA299.6-433Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA299.6 -433 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 371317-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA299.6 -433 Discovering Mathematics | QA299.6 -433 Semilinear Elliptic Equations for Beginners | QA299.6 -433 A Problem Book in Real Analysis | QA299.6 -433 Around the Research of Vladimir Maz'ya I | QA299.6 -433 Around the Research of Vladimir Maz'ya II | QA299.6 -433 Around the Research of Vladimir Maz'ya III | QA299.6 -433 A Course in Multivariable Calculus and Analysis |
Hardy Inequalities for Nonconvex Domains -- Distributions with Slow Tails and Ergodicity of Markov Semigroups in Infinite Dimensions -- On Some Aspects of the Theory of Orlicz–Sobolev Spaces -- Mellin Analysis of Weighted Sobolev Spaces with Nonhomogeneous Norms on Cones -- Optimal Hardy—Sobolev—Maz’ya Inequalities with Multiple Interior Singularities -- Sharp Fractional Hardy Inequalities in Half-Spaces -- Collapsing Riemannian Metrics to Sub-Riemannian and the Geometry of Hypersurfaces in Carnot Groups -- Sobolev Homeomorphisms and Composition Operators -- Extended Dirichlet Spaces -- Characterizations for the Hardy Inequality -- Geometric Properties of Planar -Extension Domains -- On a New Characterization of Besov Spaces with Negative Exponents -- Isoperimetric Hardy Type and Poincaré Inequalities on Metric Spaces -- Gauge Functions and Sobolev Inequalities on Fluctuating Domains -- A Converse to the Maz’ya Inequality for Capacities under Curvature Lower Bound -- Pseudo-Poincaré Inequalities and Applications to Sobolev Inequalities -- The -Faber-Krahn Inequality Noted.
International Mathematical Series Volume 11 Around the Research of Vladimir Ma'z'ya I Function Spaces Edited by Ari Laptev Professor Maz'ya is one of the foremost authorities in various fields of functional analysis and partial differential equations. In particular, Maz'ya is a proiminent figure in the development of the theory of Sobolev spaces. He is the author of the well-known monograph Sobolev Spaces (Springer, 1985). Professor Maz'ya is one of the foremost authorities in various fields of functional analysis and partial differential equations. In particular, Maz'ya is a proiminent figure in the development of the theory of Sobolev spaces. He is the author of the well-known monograph Sobolev Spaces (Springer, 1985). The following topics are discussed in this volume: Orlicz-Sobolev spaces, weighted Sobolev spaces, Besov spaces with negative exponents, Dirichlet spaces and related variational capacities, classical inequalities, including Hardy inequalities (multidimensional versions, the case of fractional Sobolev spaces etc.), Hardy-Maz'ya-Sobolev inequalities, analogs of Maz'ya's isocapacitary inequalities in a measure-metric space setting, Hardy type, Sobolev, Poincare, and pseudo-Poincare inequalities in different contexts including Riemannian manifolds, measure-metric spaces, fractal domains etc., Mazya's capacitary analogue of the coarea inequality in metric probability spaces, sharp constants, extension operators, geometry of hypersurfaces in Carnot groups, Sobolev homeomorphisms, a converse to the Maz'ya inequality for capacities and applications of Maz'ya's capacity method. Contributors include: Farit Avkhadiev (Russia) and Ari Laptev (UK—Sweden); Sergey Bobkov (USA) and Boguslaw Zegarlinski (UK); Andrea Cianchi (Italy); Martin Costabel (France), Monique Dauge (France), and Serge Nicaise (France); Stathis Filippas (Greece), Achilles Tertikas (Greece), and Jesper Tidblom (Austria); Rupert L. Frank (USA) and Robert Seiringer (USA); Nicola Garofalo (USA-Italy) and Christina Selby (USA); Vladimir Gol'dshtein (Israel) and Aleksandr Ukhlov (Israel); Niels Jacob (UK) and Rene L. Schilling (Germany); Juha Kinnunen (Finland) and Riikka Korte (Finland); Pekka Koskela (Finland), Michele Miranda Jr. (Italy), and Nageswari Shanmugalingam (USA); Moshe Marcus (Israel) and Laurent Veron (France); Joaquim Martin (Spain) and Mario Milman (USA); Eric Mbakop (USA) and Umberto Mosco (USA ); Emanuel Milman (USA); Laurent Saloff-Coste (USA); Jie Xiao (USA) Ari Laptev -Imperial College London (UK) and Royal Institute of Technology (Sweden). Ari Laptev is a world-recognized specialist in Spectral Theory of Differential Operators. He is the President of the European Mathematical Society for the period 2007- 2010. Tamara Rozhkovskaya - Sobolev Institute of Mathematics SB RAS (Russia) and an independent publisher. Editors and Authors are exclusively invited to contribute to volumes highlighting recent advances in various fields of mathematics by the Series Editor and a founder of the IMS Tamara Rozhkovskaya. Cover image: Vladimir Maz'ya
19