RNA Exosome [recurso electrónico] / edited by Torben Heick Jensen.

Por: Jensen, Torben Heick [editor.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Advances in Experimental Medicine and Biology ; 702Editor: New York, NY : Springer US, 2010Descripción: XVI, 144p. 26 illus., 11 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781441978417Tema(s): Medicine | Biomedicine | Biomedicine general | Molecular MedicineFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 610 Clasificación LoC:R-RZRecursos en línea: Libro electrónicoTexto
Contenidos:
Finding the Exosome -- Structural Components and Architectures of RNA Exosomes -- The Archaeal Exosome -- The Exosomes of Trypanosomes and Other Protists -- The Exosome and 3?–5? RNA Degradation in Plants -- Catalytic Properties of the Eukaryotic Exosome -- Functions of the Cytoplasmic Exosome -- Rrp6, Rrp47 and Cofactors of the Nuclear Exosome -- The Exosome and Heterochromatin -- Control of Cryptic Transcription in Eukaryotes -- The Human Exosome and Disease.
En: Springer eBooksResumen: The diversity of RNAs inside living cells is amazing. We have known of the more “classic” RNA species: mRNA, tRNA, rRNA, snRNA and snoRNA for some time now, but in a steady stream new types of molecules are being described as it is becoming clear that most of the genomic information of cells ends up in RNA. To deal with the enormous load of resulting RNA processing and degradation reactions, cells need adequate and efficient molecular machines. The RNA exosome is arising as a major facilitator to this effect. Structural and functional data gathered over the last decade have illustrated the biochemical importance of this multimeric complex and its many co-factors, revealing its enormous regulatory power. By gathering some of the most prominent researchers in the exosome field, it is the aim of this volume to introduce this fascinating protein complex as well as to give a timely and rich account of its many functions. The exosome was discovered more than a decade ago by Phil Mitchell and David Tollervey by its ability to trim the 3’end of yeast, S. cerevisiae, 5. 8S rRNA. In a historic account they laid out the events surrounding this identification and the subsequent birth of the research field. In the chapter by Kurt Januszyk and Christopher Lima the structural organization of eukaryotic exosomes and their evolutionary counterparts in bacteria and archaea are discussed in large part through presentation of structures.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos R -RZ (Browse shelf(Abre debajo)) 1 No para préstamo 372042-2001

Finding the Exosome -- Structural Components and Architectures of RNA Exosomes -- The Archaeal Exosome -- The Exosomes of Trypanosomes and Other Protists -- The Exosome and 3?–5? RNA Degradation in Plants -- Catalytic Properties of the Eukaryotic Exosome -- Functions of the Cytoplasmic Exosome -- Rrp6, Rrp47 and Cofactors of the Nuclear Exosome -- The Exosome and Heterochromatin -- Control of Cryptic Transcription in Eukaryotes -- The Human Exosome and Disease.

The diversity of RNAs inside living cells is amazing. We have known of the more “classic” RNA species: mRNA, tRNA, rRNA, snRNA and snoRNA for some time now, but in a steady stream new types of molecules are being described as it is becoming clear that most of the genomic information of cells ends up in RNA. To deal with the enormous load of resulting RNA processing and degradation reactions, cells need adequate and efficient molecular machines. The RNA exosome is arising as a major facilitator to this effect. Structural and functional data gathered over the last decade have illustrated the biochemical importance of this multimeric complex and its many co-factors, revealing its enormous regulatory power. By gathering some of the most prominent researchers in the exosome field, it is the aim of this volume to introduce this fascinating protein complex as well as to give a timely and rich account of its many functions. The exosome was discovered more than a decade ago by Phil Mitchell and David Tollervey by its ability to trim the 3’end of yeast, S. cerevisiae, 5. 8S rRNA. In a historic account they laid out the events surrounding this identification and the subsequent birth of the research field. In the chapter by Kurt Januszyk and Christopher Lima the structural organization of eukaryotic exosomes and their evolutionary counterparts in bacteria and archaea are discussed in large part through presentation of structures.

19

Con tecnología Koha