Adaptive Moving Mesh Methods [recurso electrónico] / by Weizhang Huang, Robert D. Russell.

Por: Huang, Weizhang [author.]Colaborador(es): Russell, Robert D [author.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Applied Mathematical Sciences ; 174Editor: New York, NY : Springer New York, 2011Descripción: XVIII, 434 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781441979162Tema(s): Mathematics | Differential equations, partial | Computer science -- Mathematics | Numerical analysis | Mathematics | Numerical Analysis | Computational Mathematics and Numerical Analysis | Partial Differential EquationsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 518 Clasificación LoC:QA297-299.4Recursos en línea: Libro electrónicoTexto
Contenidos:
Preface -- Introduction -- Adaptive Mesh Movement in 1D -- Discretization of PDEs on Time-Varying Meshes -- Basic Principles of Multidimensional Mesh Adaption -- Monitor Functions -- Variational Mesh Adaptive Methods -- Velocity-Based Adaptive Methods -- Appendix: Sobolev Spaces -- Appendix: Arithmetic Mean Geometric Mean Inequality and Jensen's Inequality -- Bibliography.
En: Springer eBooksResumen: Moving mesh methods are an effective, mesh-adaptation-based approach for the numerical solution of mathematical models of physical phenomena. Currently there exist three main strategies for mesh adaptation, namely, to use mesh subdivision,  local high order approximation (sometimes combined with mesh subdivision), and mesh movement. The latter type of adaptive mesh method has been less well studied, both computationally and theoretically. This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems.  Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. The partial differential equations considered are mainly parabolic (diffusion-dominated, rather  than convection-dominated). The extensive bibliography provides an invaluable guide to the literature in this field. Each chapter contains useful exercises. Graduate students, researchers and practitioners working in this area will benefit from this book. Weizhang Huang is a Professor in the Department of Mathematics at the University of Kansas. Robert D. Russell is a Professor in the Department of Mathematics at Simon Fraser University.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA297 -299.4 (Browse shelf(Abre debajo)) 1 No para préstamo 372059-2001

Preface -- Introduction -- Adaptive Mesh Movement in 1D -- Discretization of PDEs on Time-Varying Meshes -- Basic Principles of Multidimensional Mesh Adaption -- Monitor Functions -- Variational Mesh Adaptive Methods -- Velocity-Based Adaptive Methods -- Appendix: Sobolev Spaces -- Appendix: Arithmetic Mean Geometric Mean Inequality and Jensen's Inequality -- Bibliography.

Moving mesh methods are an effective, mesh-adaptation-based approach for the numerical solution of mathematical models of physical phenomena. Currently there exist three main strategies for mesh adaptation, namely, to use mesh subdivision,  local high order approximation (sometimes combined with mesh subdivision), and mesh movement. The latter type of adaptive mesh method has been less well studied, both computationally and theoretically. This book is about adaptive mesh generation and moving mesh methods for the numerical solution of time-dependent partial differential equations. It presents a general framework and theory for adaptive mesh generation and gives a comprehensive treatment of moving mesh methods and their basic components, along with their application for a number of nontrivial physical problems.  Many explicit examples with computed figures illustrate the various methods and the effects of parameter choices for those methods. The partial differential equations considered are mainly parabolic (diffusion-dominated, rather  than convection-dominated). The extensive bibliography provides an invaluable guide to the literature in this field. Each chapter contains useful exercises. Graduate students, researchers and practitioners working in this area will benefit from this book. Weizhang Huang is a Professor in the Department of Mathematics at the University of Kansas. Robert D. Russell is a Professor in the Department of Mathematics at Simon Fraser University.

19

Con tecnología Koha