Geometric Methods and Applications [recurso electrónico] : For Computer Science and Engineering / by Jean Gallier.

Por: Gallier, Jean [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Texts in Applied Mathematics ; 38Editor: New York, NY : Springer New York, 2011Descripción: XXVIII, 680 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781441999610Tema(s): Mathematics | Computer vision | Geometry | Mathematical optimization | Mathematics | Geometry | Computer Imaging, Vision, Pattern Recognition and Graphics | Control, Robotics, Mechatronics | OptimizationFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 516 Clasificación LoC:QA440-699Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction -- Basics of Affine Geometry --  Basic Properties of Convex Sets -- Embedding an Affine Space in a Vector Space -- Basics of Projective Geometry -- Basics of Euclidean Geometry -- Separating and Supporting Hyperplanes; Polar Duality -- Polytopes and Polyhedra -- The Cartan–Dieudonn´e Theorem -- The Quaternions and the Spaces S3, SU(2), SO(3), and RP3 --  Dirichlet–Voronoi Diagrams -- Basics of Hermitian Geometry -- Spectral Theorems --  Singular Value Decomposition (SVD) and Polar Form -- Applications of SVD and Pseudo-Inverses -- Quadratic Optimization Problems -- Schur Complements and Applications -- Quadratic Optimization and Contour Grouping -- Basics of Manifolds and Classical Lie Groups -- Basics of the Differential Geometry of Curves -- Basics of the Differential Geometry of Surfaces -- Appendix -- References -- Symbol Index -- IndexAppendix -- References -- Symbol Index -- Index.
En: Springer eBooksResumen: This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning.  This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics.   In this extensively updated second edition, more material on convex sets, Farkas’s lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA.  The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers.  Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)  
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA440 -699 (Browse shelf(Abre debajo)) 1 No para préstamo 372340-2001

Introduction -- Basics of Affine Geometry --  Basic Properties of Convex Sets -- Embedding an Affine Space in a Vector Space -- Basics of Projective Geometry -- Basics of Euclidean Geometry -- Separating and Supporting Hyperplanes; Polar Duality -- Polytopes and Polyhedra -- The Cartan–Dieudonn´e Theorem -- The Quaternions and the Spaces S3, SU(2), SO(3), and RP3 --  Dirichlet–Voronoi Diagrams -- Basics of Hermitian Geometry -- Spectral Theorems --  Singular Value Decomposition (SVD) and Polar Form -- Applications of SVD and Pseudo-Inverses -- Quadratic Optimization Problems -- Schur Complements and Applications -- Quadratic Optimization and Contour Grouping -- Basics of Manifolds and Classical Lie Groups -- Basics of the Differential Geometry of Curves -- Basics of the Differential Geometry of Surfaces -- Appendix -- References -- Symbol Index -- IndexAppendix -- References -- Symbol Index -- Index.

This book is an introduction to the fundamental concepts and tools needed for solving problems of a geometric nature using a computer. It attempts to fill the gap between standard geometry books, which are primarily theoretical, and applied books on computer graphics, computer vision, robotics, or machine learning.  This book covers the following topics: affine geometry, projective geometry, Euclidean geometry, convex sets, SVD and principal component analysis, manifolds and Lie groups, quadratic optimization, basics of differential geometry, and a glimpse of computational geometry (Voronoi diagrams and Delaunay triangulations). Some practical applications of the concepts presented in this book include computer vision, more specifically contour grouping, motion interpolation, and robot kinematics.   In this extensively updated second edition, more material on convex sets, Farkas’s lemma, quadratic optimization and the Schur complement have been added. The chapter on SVD has been greatly expanded and now includes a presentation of PCA.  The book is well illustrated and has chapter summaries and a large number of exercises throughout. It will be of interest to a wide audience including computer scientists, mathematicians, and engineers.  Reviews of first edition: "Gallier's book will be a useful source for anyone interested in applications of geometrical methods to solve problems that arise in various branches of engineering. It may help to develop the sophisticated concepts from the more advanced parts of geometry into useful tools for applications." (Mathematical Reviews, 2001) "...it will be useful as a reference book for postgraduates wishing to find the connection between their current problem and the underlying geometry." (The Australian Mathematical Society, 2001)  

19

Con tecnología Koha