Genetic Programming Theory and Practice IX [recurso electrónico] / edited by Rick Riolo, Ekaterina Vladislavleva, Jason H. Moore.
Tipo de material: TextoSeries Genetic and Evolutionary ComputationEditor: New York, NY : Springer New York, 2011Descripción: XXVIII, 264 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9781461417705Tema(s): Computer science | Information theory | Computer software | Artificial intelligence | Computer Science | Artificial Intelligence (incl. Robotics) | Theory of Computation | Algorithm Analysis and Problem Complexity | Programming TechniquesFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q334-342TJ210.2-211.495Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | Q334 -342 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 372474-2001 |
What’s in an evolved name? The evolution of modularity via tag-based Reference -- Let the Games Evolve! -- Novelty Search and the Problem with Objectives -- A fine-grained view of phenotypes and locality in genetic programming -- Evolution of an Effective Brain-Computer Interface Mouse via Genetic Programming with Adaptive Tarpeian Bloat Control -- Improved Time Series Prediction and Symbolic Regression with Affine Arithmetic -- Computational Complexity Analysis of Genetic Programming – Initial Results and Future Directions -- Accuracy in Symbolic Regression -- Human-Computer Interaction in a Computational Evolution System for the Genetic Analysis of Cancer -- Baseline Genetic Programming: Symbolic Regression on Benchmarks for Sensory Evaluation Modeling -- Detecting Shadow Economy Sizes With Symbolic Regression -- The Importance of Being Flat – Studying the Program Length Distributions of Operator Equalisation -- FFX: Fast, Scalable, Deterministic Symbolic Regression Technology.
These contributions, written by the foremost international researchers and practitioners of Genetic Programming (GP), explore the synergy between theoretical and empirical results on real-world problems, producing a comprehensive view of the state of the art in GP. Topics include: modularity and scalability; evolvability; human-competitive results; the need for important high-impact GP-solvable problems;; the risks of search stagnation and of cutting off paths to solutions; the need for novelty; empowering GP search with expert knowledge; In addition, GP symbolic regression is thoroughly discussed, addressing such topics as guaranteed reproducibility of SR; validating SR results, measuring and controlling genotypic complexity; controlling phenotypic complexity; identifying, monitoring, and avoiding over-fitting; finding a comprehensive collection of SR benchmarks, comparing SR to machine learning. This text is for all GP explorers. Readers will discover large-scale, real-world applications of GP to a variety of problem domains via in-depth presentations of the latest and most significant results.
19