The Geometry of Filtering [recurso electrónico] / by K. David Elworthy, Yves Le Jan, Xue-Mei Li.
Tipo de material: TextoSeries Frontiers in MathematicsEditor: Basel : Springer Basel, 2010Descripción: XI, 169p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783034601764Tema(s): Mathematics | Global analysis | Global differential geometry | Distribution (Probability theory) | Mathematics | Global Analysis and Analysis on Manifolds | Differential Geometry | Probability Theory and Stochastic ProcessesFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 514.74 Clasificación LoC:QA614-614.97Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA614 -614.97 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 372995-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA614 -614.97 Global and Stochastic Analysis with Applications to Mathematical Physics | QA614 -614.97 An Invitation to Morse Theory | QA614 -614.97 Hamiltonian Structures and Generating Families | QA614 -614.97 The Geometry of Filtering | QA614 -614.97 Homological Algebra of Semimodules and Semicontramodules | QA614 -614.97 Problems in Non-Linear Analysis | QA639.5 -640.7 The Kepler Conjecture |
Diffusion Operators -- Decomposition of Diffusion Operators -- Equivariant Diffusions on Principal Bundles -- Projectible Diffusion Processes and Markovian Filtering -- Filtering with non-Markovian Observations -- The Commutation Property -- Example: Riemannian Submersions and Symmetric Spaces -- Example: Stochastic Flows -- Appendices.
Filtering is the science of nding the law of a process given a partial observation of it. The main objects we study here are di usion processes. These are naturally associated with second-order linear di erential operators which are semi-elliptic and so introduce a possibly degenerate Riemannian structure on the state space. In fact, much of what we discuss is simply about two such operators intertwined by a smooth map, the \projection from the state space to the observations space", and does not involve any stochastic analysis. From the point of view of stochastic processes, our purpose is to present and to study the underlying geometric structure which allows us to perform the ltering in a Markovian framework with the resulting conditional law being that of a Markov process which is time inhomogeneous in general. This geometry is determined by the symbol of the operator on the state space which projects to a symbol on the observation space. The projectible symbol induces a (possibly non-linear and partially de ned) connection which lifts the observation process to the state space and gives a decomposition of the operator on the state space and of the noise. As is standard we can recover the classical ltering theory in which the observations are not usually Markovian by application of the Girsanov- Maruyama-Cameron-Martin Theorem. This structure we have is examined in relation to a number of geometrical topics.
19