Homotopy Theory of C*-Algebras [recurso electrónico] / by Paul Arne Østvær.

Por: Østvær, Paul Arne [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Frontiers in MathematicsEditor: Basel : Springer Basel, 2010Descripción: VI, 140p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783034605656Tema(s): Mathematics | Functional analysis | Algebraic topology | Mathematics | Algebraic Topology | Functional AnalysisFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 514.2 Clasificación LoC:QA612-612.8Recursos en línea: Libro electrónicoTexto
Contenidos:
1 Introduction -- 2 Preliminaries -- 2.1 C*-spaces -- 2.2 G – C*-spaces -- 2.3 Model categories -- 3 Unstable C*-homotopy theory -- 3.1 Pointwise model structures -- 3.2 Exact model structures -- 3.3 Matrix invariant model structures -- 3.4 Homotopy invariant model structures -- 3.5 Pointed model structures -- 3.6 Base change -- 4 Stable C*-homotopy theory -- 4.1 C*-spectra -- 4.2 Bispectra -- 4.3 Triangulated structure -- 4.4 Brown representability -- 4.5 C*-symmetric spectra -- 4.6 C*-functors -- 5 Invariants -- 5.1 Cohomology and homology theories -- 5.2 KK-theory and the Eilenberg-MacLane spectrum -- 5.3 HL-theory and the Eilenberg-MacLane -- 5.4 The Chern-Connes-Karoubi character -- 5.5 K-theory of C*-algebras -- 5.6 Zeta functions -- 6 The slice filtration -- References -- Index.
En: Springer eBooksResumen: Homotopy theory and C*-algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA612 -612.8 (Browse shelf(Abre debajo)) 1 No para préstamo 373035-2001

1 Introduction -- 2 Preliminaries -- 2.1 C*-spaces -- 2.2 G – C*-spaces -- 2.3 Model categories -- 3 Unstable C*-homotopy theory -- 3.1 Pointwise model structures -- 3.2 Exact model structures -- 3.3 Matrix invariant model structures -- 3.4 Homotopy invariant model structures -- 3.5 Pointed model structures -- 3.6 Base change -- 4 Stable C*-homotopy theory -- 4.1 C*-spectra -- 4.2 Bispectra -- 4.3 Triangulated structure -- 4.4 Brown representability -- 4.5 C*-symmetric spectra -- 4.6 C*-functors -- 5 Invariants -- 5.1 Cohomology and homology theories -- 5.2 KK-theory and the Eilenberg-MacLane spectrum -- 5.3 HL-theory and the Eilenberg-MacLane -- 5.4 The Chern-Connes-Karoubi character -- 5.5 K-theory of C*-algebras -- 5.6 Zeta functions -- 6 The slice filtration -- References -- Index.

Homotopy theory and C*-algebras are central topics in contemporary mathematics. This book introduces a modern homotopy theory for C*-algebras. One basic idea of the setup is to merge C*-algebras and spaces studied in algebraic topology into one category comprising C*-spaces. These objects are suitable fodder for standard homotopy theoretic moves, leading to unstable and stable model structures. With the foundations in place one is led to natural definitions of invariants for C*-spaces such as homology and cohomology theories, K-theory and zeta-functions. The text is largely self-contained. It serves a wide audience of graduate students and researchers interested in C*-algebras, homotopy theory and applications.

19

Con tecnología Koha