Poncelet Porisms and Beyond [recurso electrónico] : Integrable Billiards, Hyperelliptic Jacobians and Pencils of Quadrics / by Vladimir Dragovic, Milena Radnovic.
Tipo de material: TextoSeries Frontiers in MathematicsEditor: Basel : Springer Basel, 2011Descripción: VIII, 294p. 75 illus., 1 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783034800150Tema(s): Mathematics | Geometry, algebraic | Mathematics | Algebraic GeometryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 516.35 Clasificación LoC:QA564-609Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA564 -609 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 373040-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA564 -609 Arrangements, Local Systems and Singularities | QA564 -609 Affine Flag Manifolds and Principal Bundles | QA564 -609 Classification of Higher Dimensional Algebraic Varieties | QA564 -609 Poncelet Porisms and Beyond | QA564 -609 Approximate Commutative Algebra | QA564 -609 Geometry of Algebraic Curves | QA564 -609 A Course in Commutative Algebra |
Introduction to Poncelet Porisms -- Billiards – First Examples -- Hyper-Elliptic Curves and Their Jacobians -- Projective geometry -- Poncelet Theorem and Cayley’s Condition -- Poncelet–Darboux Curves and Siebeck–Marden Theorem -- Ellipsoidal Billiards and their Periodical Trajectories -- Billiard Law and Hyper-Elliptic Curves -- Poncelet Theorem and Continued Fractions -- Quantum Yang-Baxter equation and (2-2)-correspondences -- Bibliography -- Index.
The goal of the book is to present, in a complete and comprehensive way, areas of current research interlacing around the Poncelet porism: dynamics of integrable billiards, algebraic geometry of hyperelliptic Jacobians, and classical projective geometry of pencils of quadrics. The most important results and ideas, classical as well as modern, connected to the Poncelet theorem are presented, together with a historical overview analyzing the classical ideas and their natural generalizations. Special attention is paid to the realization of the Griffiths and Harris programme about Poncelet-type problems and addition theorems. This programme, formulated three decades ago, is aimed to understanding the higher-dimensional analogues of Poncelet problems and the realization of the synthetic approach of higher genus addition theorems.
19