Approximate Commutative Algebra [recurso electrónico] / edited by Lorenzo Robbiano, John Abbott.

Por: Robbiano, Lorenzo [editor.]Colaborador(es): Abbott, John [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Texts and Monographs in Symbolic Computation, A Series of the Research Institute for Symbolic Computation, Johannes Kepler University, Linz, AustriaEditor: Vienna : Springer Vienna, 2010Descripción: XIV, 227p. 15 illus., 4 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783211993149Tema(s): Mathematics | Algebra -- Data processing | Geometry, algebraic | Algebra | Numerical analysis | Mathematics | Algebraic Geometry | Commutative Rings and Algebras | Numerical Analysis | Symbolic and Algebraic ManipulationFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 516.35 Clasificación LoC:QA564-609Recursos en línea: Libro electrónicoTexto
Contenidos:
From Oil Fields to Hilbert Schemes -- Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials -- Towards Geometric Completion of Differential Systems by Points -- Geometric Involutive Bases and Applications to Approximate Commutative Algebra -- Regularization and Matrix Computation in Numerical Polynomial Algebra -- Ideal Interpolation: Translations to and from Algebraic Geometry -- An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint -- ApCoA = Embedding Commutative Algebra into Analysis -- Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares.
En: Springer eBooksResumen: Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA564 -609 (Browse shelf(Abre debajo)) 1 No para préstamo 373086-2001

From Oil Fields to Hilbert Schemes -- Numerical Decomposition of the Rank-Deficiency Set of a Matrix of Multivariate Polynomials -- Towards Geometric Completion of Differential Systems by Points -- Geometric Involutive Bases and Applications to Approximate Commutative Algebra -- Regularization and Matrix Computation in Numerical Polynomial Algebra -- Ideal Interpolation: Translations to and from Algebraic Geometry -- An Introduction to Regression and Errors in Variables from an Algebraic Viewpoint -- ApCoA = Embedding Commutative Algebra into Analysis -- Exact Certification in Global Polynomial Optimization Via Rationalizing Sums-Of-Squares.

Approximate Commutative Algebra is an emerging field of research which endeavours to bridge the gap between traditional exact Computational Commutative Algebra and approximate numerical computation. The last 50 years have seen enormous progress in the realm of exact Computational Commutative Algebra, and given the importance of polynomials in scientific modelling, it is very natural to want to extend these ideas to handle approximate, empirical data deriving from physical measurements of phenomena in the real world. In this volume nine contributions from established researchers describe various approaches to tackling a variety of problems arising in Approximate Commutative Algebra.

19

Con tecnología Koha