Design of Modern Heuristics [recurso electrónico] : Principles and Application / by Franz Rothlauf.
Tipo de material: TextoSeries Natural Computing SeriesEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: XI, 267 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540729624Tema(s): Computer science | Artificial intelligence | Mathematical optimization | Engineering | Management information systems | Computer Science | Artificial Intelligence (incl. Robotics) | Optimization | Computational Intelligence | Business Information SystemsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q334-342TJ210.2-211.495Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | Q334 -342 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 373195-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
Q334 -342 Robot Intelligence | Q334 -342 Foundations of Intelligent Systems | Q334 -342 Cognitive Reasoning | Q334 -342 Design of Modern Heuristics | Q334 -342 Process Neural Networks | Q334 -342 Resource-Adaptive Cognitive Processes | Q334 -342 Advances in Data Analysis, Data Handling and Business Intelligence |
Chap. 1 -- Introduction -- Part I -- Fundamentals -- Chap. 2 -- Optimization Problems -- Chap. 3 -- Optimization Methods -- Part II -- Modern Heuristics -- Chap. 4 -- Design Elements -- Chap. 5 -- Search Strategies -- Chap. 6 -- Design Principles -- Part III Case Studies -- Chap. 7 -- High Locality Representations for Automated Programming -- Chap. 8.-Biased Modern Heuristics for the OCST Problem -- Chap. 9.-Summary -- References -- Nomenclature -- Glossary -- Index.
Most textbooks on modern heuristics provide the reader with detailed descriptions of the functionality of single examples like genetic algorithms, genetic programming, tabu search, simulated annealing, and others, but fail to teach the underlying concepts behind these different approaches. The author takes a different approach in this textbook by focusing on the users' needs and answering three fundamental questions: First, he tells us which problems modern heuristics are expected to perform well on, and which should be left to traditional optimization methods. Second, he teaches us to systematically design the "right" modern heuristic for a particular problem by providing a coherent view on design elements and working principles. Third, he shows how we can make use of problem-specific knowledge for the design of efficient and effective modern heuristics that solve not only small toy problems but also perform well on large real-world problems. This book is written in an easy-to-read style and it is aimed at students and practitioners in computer science, operations research and information systems who want to understand modern heuristics and are interested in a guide to their systematic design and use.
19