Stability and Chaos in Celestial Mechanics [recurso electrónico] / by Alessandra Celletti.
Tipo de material: TextoSeries Springer Praxis BooksEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Descripción: online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540851462Tema(s): Physics | Mathematical physics | Mechanics | Astrophysics | Physics | Extraterrestrial Physics, Space Sciences | Astrophysics and Astroparticles | Mechanics | Statistical Physics, Dynamical Systems and Complexity | Mathematical Methods in PhysicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 520 | 500.5 Clasificación LoC:QB495-500.269Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QB495 -500.269 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 373250-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QB495 -500.269 Trailblazing Medicine | QB495 -500.269 Selecting the Mercury Seven | QB495 -500.269 Coronal Mass Ejections | QB495 -500.269 Stability and Chaos in Celestial Mechanics | QB495 -500.269 Proceedings of the Third UN/ESA/NASA Workshop on the International Heliophysical Year 2007 and Basic Space Science | QB495 -500.269 Heliophysical Processes | QB495 -500.269 Fine Structure of Solar Radio Bursts |
Order and chaos -- Numerical dynamical methods -- Kepler’s problem -- The three-body problem and the Lagrangian solutions -- Rotational dynamics -- Perturbation theory -- Invariant tori -- Long-time stability -- Determination of periodic orbits -- Regularization theory.
The last decades have marked the beginning of a new era in Celestial Mech- ics. The challenges came from several di?erent directions. The stability theory of nearly–integrable systems (a class of problems which includes many models of - lestial Mechanics) pro?ted from the breakthrough represented by the Kolmogorov– Arnold–Moser theory, which also provides tools for determining explicitly the - rameter values allowing for stability. A con?nement of the actions for exponential times was guaranteed by Nekhoroshev’s theorem, which gives much information about the geography of the resonances. Performing ever-faster computer simu- tionsallowedustohavedeeperinsightsintomanyquestionsofDynamicalSystems, most notably chaos theory. In this context several techniques have been developed to distinguish between ordered and chaotic behaviors. Modern tools for computing spacecraft trajectories made possible the realization of many space missions, es- cially the interplanetary tours, which gave a new shape to the solar system with a lot of new satellites and small bodies. Finally, the improvement of observational techniques allowed us to make two revolutions in the sky: the solar system does not end with Pluto, but it extends to the Kuiper belt, and the solar system is not unique, but the universe has plenty of extrasolar planetary systems. Cookingalltheseingredientstogetherwiththeclassicaltheoriesdevelopedfrom the 17th to the 19th centuries, one obtains themodern Celestial Mechanics.
19