Shock Wave Science and Technology Reference Library, Vol. 5 [recurso electrónico] : Non-Shock Initiation of Explosives / edited by B. W. Asay.

Por: Asay, B. W [editor.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Shock Wave Science and Technology Reference Library ; 5Editor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010Descripción: XVII, 617p. 298 illus., 2 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783540879534Tema(s): Engineering | Chemistry, Physical organic | Chemicals -- Safety measures | Chemical engineering | Mechanical engineering | Engineering | Mechanical Engineering | Industrial Chemistry/Chemical Engineering | Safety in Chemistry, Dangerous Goods | Classical Continuum Physics | Physical ChemistryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 621 Clasificación LoC:TJ1-1570Recursos en línea: Libro electrónicoTexto
Contenidos:
Transport Phenomena for Nonshock Initiation Processes -- The Chemical Kinetics of Solid Thermal Explosions -- Classical Theory of Thermal Criticality -- Deflagration Phenomena in Energetic Materials: An Overview -- Mechanical and Thermal Damage -- Cookoff -- The Deflagration-to-Detonation Transition -- Friction -- Impact and Shear Ignition By Nonshock Mechanisms -- Spark and Laser Ignition.
En: Springer eBooksResumen: The sensitivity of an explosive is not a well defined property of the material but rather a complex pattern of behavior. Unlike the response to strong, planar shocks which is for the most part predictable and reproducible, explosives' response to multidimensional and weaker stimuli is much more complicated. The present volume is the first compendium to assemble in a single text our present knowledge about the vast range of non-shock ignition mechanisms and responses, where initiation is not prompt, and involves a series of steps that may or may not lead to a steady detonation. The 11 extensive chapters in this volume are: - Context and Complexity of Non-Shock Initiation (B. W. Asay) - Transport Phenomena for Non-Shock Initiation Processes (L. Perry) - The Chemical Kinetics of Solid Thermal Explosions (B. F. Henson) - Classical Theory of Thermal Criticality (L. G. Hill) - Deflagration Phenomena in Energetic Materials (S. I. Jackson) - Mechanical and Thermal Damage (G. R. Parker and P. J. Rae) - Cook-off (B. W. Asay) - The Deflagration-to-Detonation Transition (J. M. McAfee) - Friction (P. M. Dickson) - Impact and Shear Ignition by Non-Shock Mechanisms (J. E. Kennedy) - Spark and Laser Ignition (J. E. Kennedy) Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a timely reference, for postgraduate students as well as professional scientists and engineers, by laying out the foundations and discussing the latest developments including yet unresolved challenging problems.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos TJ1 -1570 (Browse shelf(Abre debajo)) 1 No para préstamo 373274-2001

Transport Phenomena for Nonshock Initiation Processes -- The Chemical Kinetics of Solid Thermal Explosions -- Classical Theory of Thermal Criticality -- Deflagration Phenomena in Energetic Materials: An Overview -- Mechanical and Thermal Damage -- Cookoff -- The Deflagration-to-Detonation Transition -- Friction -- Impact and Shear Ignition By Nonshock Mechanisms -- Spark and Laser Ignition.

The sensitivity of an explosive is not a well defined property of the material but rather a complex pattern of behavior. Unlike the response to strong, planar shocks which is for the most part predictable and reproducible, explosives' response to multidimensional and weaker stimuli is much more complicated. The present volume is the first compendium to assemble in a single text our present knowledge about the vast range of non-shock ignition mechanisms and responses, where initiation is not prompt, and involves a series of steps that may or may not lead to a steady detonation. The 11 extensive chapters in this volume are: - Context and Complexity of Non-Shock Initiation (B. W. Asay) - Transport Phenomena for Non-Shock Initiation Processes (L. Perry) - The Chemical Kinetics of Solid Thermal Explosions (B. F. Henson) - Classical Theory of Thermal Criticality (L. G. Hill) - Deflagration Phenomena in Energetic Materials (S. I. Jackson) - Mechanical and Thermal Damage (G. R. Parker and P. J. Rae) - Cook-off (B. W. Asay) - The Deflagration-to-Detonation Transition (J. M. McAfee) - Friction (P. M. Dickson) - Impact and Shear Ignition by Non-Shock Mechanisms (J. E. Kennedy) - Spark and Laser Ignition (J. E. Kennedy) Each chapter is self-contained and can be read independently of the others, though, they are thematically interrelated. They offer a timely reference, for postgraduate students as well as professional scientists and engineers, by laying out the foundations and discussing the latest developments including yet unresolved challenging problems.

19

Con tecnología Koha