Applications of Fourier Transform to Smile Modeling [recurso electrónico] : Theory and Implementation / by Jianwei Zhu.
Tipo de material: TextoSeries Springer FinanceEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Descripción: XV, 330 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642018084Tema(s): Economics | Finance | Banks and banking | Economics/Management Science | Finance /Banking | Quantitative FinanceFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 657.8333 | 658.152 Clasificación LoC:HG1-9999HG4501-6051HG1501-HG3550Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | HG1 -9999 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 373405-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
HG1 -9999 Financial Economics | HG1 -9999 Financial Strategies for the Manager | HG1 -9999 Investment Banking | HG1 -9999 Applications of Fourier Transform to Smile Modeling | HG1 -9999 The Industrial Organization of Banking | HG1 -9999 Pricing of Derivatives on Mean-Reverting Assets | HG1 -9999 Theory of Zipf's Law and Beyond |
Option Valuation and the Volatility Smile -- Characteristic Functions in Option Pricing -- Stochastic Volatility Models -- Numerical Issues of Stochastic Volatility Models -- Simulating Stochastic Volatility Models -- Stochastic Interest Models -- Poisson Jumps -- Lévy Jumps -- Integrating Various Stochastic Factors -- Exotic Options with Stochastic Volatilities -- Libor Market Model with Stochastic Volatilities.
The sound modeling of the smile effect is an important issue in quantitative finance as, for more than a decade, the Fourier transform has established itself as the most efficient tool for deriving closed-form option pricing formulas in various model classes. This book describes the applications of the Fourier transform to the modeling of volatility smile, followed by a comprehensive treatment of option valuation in a unified framework, covering stochastic volatilities and interest rates, Poisson and Levy jumps, including various asset classes such as equity, FX and interest rates, as well as various numberical examples and prototype programming codes. Readers will benefit from this book not only by gaining an overview of the advanced theory and the vast range of literature on these topics, but also by receiving first-hand feedback on the practical applications and implementations of the theory. The book is aimed at financial engineers, risk managers, graduate students and researchers.
19