Diabetes, Insulin and Alzheimer's Disease [recurso electrónico] / edited by Suzanne Craft, Yves Christen.

Por: Craft, Suzanne [editor.]Colaborador(es): Christen, Yves [editor.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Research and Perspectives in Alzheimer's DiseaseEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Descripción: XIII, 250p. 30 illus., 21 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642043000Tema(s): Medicine | Neurosciences | Geriatrics | Endocrinology | Biomedicine | Neurosciences | Endocrinology | Geriatrics/GerontologyFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 612.8 Clasificación LoC:RC321-580Recursos en línea: Libro electrónicoTexto
Contenidos:
Insulin Action in the Brain and the Pathogenesis of Alzheimer’s Disease -- The Brain-insulin Connection, Metabolic Diseases and Related Pathologies -- Insulin-Mediated Neuroplasticity in the Central Nervous System -- Stress Hormones and Neuroplasticity in the Diabetic Brain -- Diabetes and the Brain – An Epidemiologic Perspective -- Cognition in Type 2 Diabetes: Brain Imaging Correlates and Vascular and Metabolic Risk Factors -- The Relationship Between the Continuum of Elevated Adiposity, Hyperinsulinemia, and Type 2 Diabetes and Late-onset Alzheimer’s Disease: An Epidemiological Perspective -- The Role of Insulin Dysregulation in Aging and Alzheimer’s Disease -- Is Alzheimer’s a Disorder of Ageing and Why Don’t Mice get it? The Centrality of Insulin Signalling to Alzheimer’s Disease Pathology -- PKC and Insulin Pathways in Memory Storage: Targets for Synaptogenesis, Anti-apoptosis, and the Treatment of AD -- Diet, Abeta Oligomers and Defective Insulin and Neurotrophic Factor Signaling in Alzheimer’s Disease -- Serum IGF-I, Life Style, and Risk of Alzheimer’s disease.
En: Springer eBooksResumen: Neurons share more similarities with insulin-producing pancreatic islet cells than with any other cell type. The root of this similarity may lie in the islet’s evolution from an ancestral insulin-producing neuron. The islet-neuron connection becomes less surprising as we learn more about insulin’s involvement in functions far from its traditional role in mediating glucose uptake in muscle. The importance of insulin in the regulation of corporal aging has been established by the dramatic increases in longevity experienced by animals in which the adipose insulin receptor has been genetically eliminated, or in which the insulin-related daf genes have been mutated. New research suggests that, analogous to its influence on corporal aging, insulin also makes important contributions to brain aging and the expression of late-life neurodegenerative disease. Insulin plays a key role in cognition and other aspects of normal brain function. Insulin resistance induces chronic peripheral insulin elevations and is associated with reduced insulin activity both in periphery and brain. The insulin resistance syndrome underlies conditions such as Type 2 diabetes mellitus and hypertension, which are associated with age-related cognitive impairment and Alzheimer’s disease. This book discusses the mechanisms through which insulin dysregulation contributes to the development of cognitive impairment and late-life neurodegenerative disease. Given the recent pandemic of conditions associated with insulin resistance, it is imperative that we achieve a comprehensive knowledge of the mechanisms through which insulin resistance affects brain function in order to develop therapeutic strategies to address these effects.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos RC321 -580 (Browse shelf(Abre debajo)) 1 No para préstamo 373634-2001

Insulin Action in the Brain and the Pathogenesis of Alzheimer’s Disease -- The Brain-insulin Connection, Metabolic Diseases and Related Pathologies -- Insulin-Mediated Neuroplasticity in the Central Nervous System -- Stress Hormones and Neuroplasticity in the Diabetic Brain -- Diabetes and the Brain – An Epidemiologic Perspective -- Cognition in Type 2 Diabetes: Brain Imaging Correlates and Vascular and Metabolic Risk Factors -- The Relationship Between the Continuum of Elevated Adiposity, Hyperinsulinemia, and Type 2 Diabetes and Late-onset Alzheimer’s Disease: An Epidemiological Perspective -- The Role of Insulin Dysregulation in Aging and Alzheimer’s Disease -- Is Alzheimer’s a Disorder of Ageing and Why Don’t Mice get it? The Centrality of Insulin Signalling to Alzheimer’s Disease Pathology -- PKC and Insulin Pathways in Memory Storage: Targets for Synaptogenesis, Anti-apoptosis, and the Treatment of AD -- Diet, Abeta Oligomers and Defective Insulin and Neurotrophic Factor Signaling in Alzheimer’s Disease -- Serum IGF-I, Life Style, and Risk of Alzheimer’s disease.

Neurons share more similarities with insulin-producing pancreatic islet cells than with any other cell type. The root of this similarity may lie in the islet’s evolution from an ancestral insulin-producing neuron. The islet-neuron connection becomes less surprising as we learn more about insulin’s involvement in functions far from its traditional role in mediating glucose uptake in muscle. The importance of insulin in the regulation of corporal aging has been established by the dramatic increases in longevity experienced by animals in which the adipose insulin receptor has been genetically eliminated, or in which the insulin-related daf genes have been mutated. New research suggests that, analogous to its influence on corporal aging, insulin also makes important contributions to brain aging and the expression of late-life neurodegenerative disease. Insulin plays a key role in cognition and other aspects of normal brain function. Insulin resistance induces chronic peripheral insulin elevations and is associated with reduced insulin activity both in periphery and brain. The insulin resistance syndrome underlies conditions such as Type 2 diabetes mellitus and hypertension, which are associated with age-related cognitive impairment and Alzheimer’s disease. This book discusses the mechanisms through which insulin dysregulation contributes to the development of cognitive impairment and late-life neurodegenerative disease. Given the recent pandemic of conditions associated with insulin resistance, it is imperative that we achieve a comprehensive knowledge of the mechanisms through which insulin resistance affects brain function in order to develop therapeutic strategies to address these effects.

19

Con tecnología Koha