Exploitation of Linkage Learning in Evolutionary Algorithms [recurso electrónico] / edited by Ying-ping Chen.
Tipo de material: TextoSeries Evolutionary Learning and Optimization ; 3Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Descripción: 265p. 30 illus. in color. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642128349Tema(s): Engineering | Artificial intelligence | Mathematics | Engineering mathematics | Engineering | Appl.Mathematics/Computational Methods of Engineering | Artificial Intelligence (incl. Robotics) | Applications of MathematicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 519 Clasificación LoC:TA329-348TA640-643Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | TA329 -348 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 374358-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
TA329 -348 Production Engineering and Management under Fuzziness | TA329 -348 Recent Advances in Optimization and its Applications in Engineering | TA329 -348 Modeling Machine Emotions for Realizing Intelligence | TA329 -348 Exploitation of Linkage Learning in Evolutionary Algorithms | TA329 -348 Video Search and Mining | TA329 -348 Genome Clustering | TA329 -348 Multimedia Services in Intelligent Environments |
Linkage and Problem Structures -- Linkage Structure and Genetic Evolutionary Algorithms -- Fragment as a Small Evidence of the Building Blocks Existence -- Structure Learning and Optimisation in a Markov Network Based Estimation of Distribution Algorithm -- DEUM – A Fully Multivariate EDA Based on Markov Networks -- Model Building and Exploiting -- Pairwise Interactions Induced Probabilistic Model Building -- ClusterMI: Building Probabilistic Models Using Hierarchical Clustering and Mutual Information -- Estimation of Distribution Algorithm Based on Copula Theory -- Analyzing the k Most Probable Solutions in EDAs Based on Bayesian Networks -- Applications -- Protein Structure Prediction Based on HP Model Using an Improved Hybrid EDA -- Sensible Initialization of a Computational Evolution System Using Expert Knowledge for Epistasis Analysis in Human Genetics -- Estimating Optimal Stopping Rules in the Multiple Best Choice Problem with Minimal Summarized Rank via the Cross-Entropy Method.
One major branch of enhancing the performance of evolutionary algorithms is the exploitation of linkage learning. This monograph aims to capture the recent progress of linkage learning, by compiling a series of focused technical chapters to keep abreast of the developments and trends in the area of linkage. In evolutionary algorithms, linkage models the relation between decision variables with the genetic linkage observed in biological systems, and linkage learning connects computational optimization methodologies and natural evolution mechanisms. Exploitation of linkage learning can enable us to design better evolutionary algorithms as well as to potentially gain insight into biological systems. Linkage learning has the potential to become one of the dominant aspects of evolutionary algorithms; research in this area can potentially yield promising results in addressing the scalability issues.
19