Triangulations [recurso electrónico] : Structures for Algorithms and Applications / by Jesús A. Loera, Jörg Rambau, Francisco Santos.
Tipo de material:

Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA639.5 -640.7 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 374384-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA614 -614.97 Problems in Non-Linear Analysis | QA639.5 -640.7 The Kepler Conjecture | QA639.5 -640.7 Matroid Theory and its Applications | QA639.5 -640.7 Triangulations | QA641 -670 Modern Differential Geometry in Gauge Theories | QA641 -670 Riemannian Geometry of Contact and Symplectic Manifolds | QA641 -670 CR Submanifolds of Complex Projective Space |
Triangulations in Mathematics -- Configurations, Triangulations, Subdivisions, and Flips -- Life in Two Dimensions -- A Tool Box -- Regular Triangulations and Secondary Polytopes -- Some Interesting Configurations -- Some Interesting Triangulations -- Algorithmic Issues -- Further Topics.
Triangulations appear everywhere, from volume computations and meshing to algebra and topology. This book studies the subdivisions and triangulations of polyhedral regions and point sets and presents the first comprehensive treatment of the theory of secondary polytopes and related topics. A central theme of the book is the use of the rich structure of the space of triangulations to solve computational problems (e.g., counting the number of triangulations or finding optimal triangulations with respect to various criteria), and to establish connections to applications in algebra, computer science, combinatorics, and optimization. With many examples and exercises, and with nearly five hundred illustrations, the book gently guides readers through the properties of the spaces of triangulations of "structured" (e.g., cubes, cyclic polytopes, lattice polytopes) and "pathological" (e.g., disconnected spaces of triangulations) situations using only elementary principles.
19