Optimization and Regularization for Computational Inverse Problems and Applications [recurso electrónico] / edited by Yanfei Wang, Changchun Yang, Anatoly G. Yagola.
Tipo de material: TextoEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: 400p. 36 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642137426Tema(s): Mathematics | Remote sensing | Computer science -- Mathematics | Engineering mathematics | Mathematics | Computational Mathematics and Numerical Analysis | Appl.Mathematics/Computational Methods of Engineering | Remote Sensing/PhotogrammetryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 518 | 518 Clasificación LoC:QA71-90Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA71 -90 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 374575-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
Introduction -- Regularization Theory and Recent Developments -- Nonstandard Regularization and Advanced Optimization Theory and Methods -- Numerical Inversion in Geoscience and Quantitative Remote Sensing.
"Optimization and Regularization for Computational Inverse Problems and Applications" focuses on advances in inversion theory and recent developments with practical applications, particularly emphasizing the combination of optimization and regularization for solving inverse problems. This book covers both the methods, including standard regularization theory, Fejer processes for linear and nonlinear problems, the balancing principle, extrapolated regularization, nonstandard regularization, nonlinear gradient method, the nonmonotone gradient method, subspace method and Lie group method; and the practical applications, such as the reconstruction problem for inverse scattering, molecular spectra data processing, quantitative remote sensing inversion, seismic inversion using the Lie group method, and the gravitational lensing problem. Scientists, researchers and engineers, as well as graduate students engaged in applied mathematics, engineering, geophysics, medical science, image processing, remote sensing and atmospheric science will benefit from this book. Dr. Yanfei Wang is a Professor at the Institute of Geology and Geophysics, Chinese Academy of Sciences, China. Dr. Sc. Anatoly G. Yagola is a Professor and Assistant Dean of the Physical Faculty, Lomonosov Moscow State University, Russia. Dr. Changchun Yang is a Professor and Vice Director of the Institute of Geology and Geophysics, Chinese Academy of Sciences, China.
19