Adaptive Representations for Reinforcement Learning [recurso electrónico] / by Shimon Whiteson.

Por: Whiteson, Shimon [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Studies in Computational Intelligence ; 291Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2010Descripción: XIII, 116 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642139321Tema(s): Engineering | Artificial intelligence | Engineering | Computational Intelligence | Artificial Intelligence (incl. Robotics)Formatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q342Recursos en línea: Libro electrónicoTexto
Contenidos:
Part 1 Introduction -- Part 2 Reinforcement Learning -- Part 3 On-Line Evolutionary Computation -- Part 4 Evolutionary Function Approximation -- Part 5 Sample-Efficient Evolutionary Function Approximation -- Part 6 Automatic Feature Selection for Reinforcement Learning -- Part 7 Adaptive Tile Coding -- Part 8 RelatedWork -- Part 9 Conclusion -- Part 10 Statistical Significance.
En: Springer eBooksResumen: This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own representations have the potential to dramatically improve performance. This book introduces two novel approaches for automatically discovering high-performing representations. The first approach synthesizes temporal difference methods, the traditional approach to reinforcement learning, with evolutionary methods, which can learn representations for a broad class of optimization problems. This synthesis is accomplished by customizing evolutionary methods to the on-line nature of reinforcement learning and using them to evolve representations for value function approximators. The second approach automatically learns representations based on piecewise-constant approximations of value functions. It begins with coarse representations and gradually refines them during learning, analyzing the current policy and value function to deduce the best refinements. This book also introduces a novel method for devising input representations. This method addresses the feature selection problem by extending an algorithm that evolves the topology and weights of neural networks such that it evolves their inputs too. In addition to introducing these new methods, this book presents extensive empirical results in multiple domains demonstrating that these techniques can substantially improve performance over methods with manual representations.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos Q342 (Browse shelf(Abre debajo)) 1 No para préstamo 374623-2001

Part 1 Introduction -- Part 2 Reinforcement Learning -- Part 3 On-Line Evolutionary Computation -- Part 4 Evolutionary Function Approximation -- Part 5 Sample-Efficient Evolutionary Function Approximation -- Part 6 Automatic Feature Selection for Reinforcement Learning -- Part 7 Adaptive Tile Coding -- Part 8 RelatedWork -- Part 9 Conclusion -- Part 10 Statistical Significance.

This book presents new algorithms for reinforcement learning, a form of machine learning in which an autonomous agent seeks a control policy for a sequential decision task. Since current methods typically rely on manually designed solution representations, agents that automatically adapt their own representations have the potential to dramatically improve performance. This book introduces two novel approaches for automatically discovering high-performing representations. The first approach synthesizes temporal difference methods, the traditional approach to reinforcement learning, with evolutionary methods, which can learn representations for a broad class of optimization problems. This synthesis is accomplished by customizing evolutionary methods to the on-line nature of reinforcement learning and using them to evolve representations for value function approximators. The second approach automatically learns representations based on piecewise-constant approximations of value functions. It begins with coarse representations and gradually refines them during learning, analyzing the current policy and value function to deduce the best refinements. This book also introduces a novel method for devising input representations. This method addresses the feature selection problem by extending an algorithm that evolves the topology and weights of neural networks such that it evolves their inputs too. In addition to introducing these new methods, this book presents extensive empirical results in multiple domains demonstrating that these techniques can substantially improve performance over methods with manual representations.

19

Con tecnología Koha