The Gaussian Approximation Potential [recurso electrónico] : An Interatomic Potential Derived from First Principles Quantum Mechanics / by Albert Bart?k-Pártay.

Por: Bart?k-Pártay, Albert [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Springer Theses, Recognizing Outstanding Ph.D. ResearchEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2010Descripción: XIV, 90 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642140679Tema(s): Physics | Physics | Solid State Physics | Theoretical, Mathematical and Computational PhysicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 530.41 Clasificación LoC:QC176-176.9Recursos en línea: Libro electrónicoTexto
Contenidos:
Representation of Atomic Environments -- Gaussian Process -- Interatomic Potentials -- Computational Methods -- Results -- Conclusion and Further Work -- Appendices.
En: Springer eBooksResumen: Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QC176 -176.9 (Browse shelf(Abre debajo)) 1 No para préstamo 374665-2001

Representation of Atomic Environments -- Gaussian Process -- Interatomic Potentials -- Computational Methods -- Results -- Conclusion and Further Work -- Appendices.

Simulation of materials at the atomistic level is an important tool in studying microscopic structures and processes. The atomic interactions necessary for the simulations are correctly described by Quantum Mechanics, but the size of systems and the length of processes that can be modelled are still limited. The framework of Gaussian Approximation Potentials that is developed in this thesis allows us to generate interatomic potentials automatically, based on quantum mechanical data. The resulting potentials offer several orders of magnitude faster computations, while maintaining quantum mechanical accuracy. The method has already been successfully applied for semiconductors and metals.

19

Con tecnología Koha