Learning to Rank for Information Retrieval [recurso electrónico] / by Tie-Yan Liu.
Tipo de material: TextoEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011Descripción: XVII, 285 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642142673Tema(s): Computer science | Information storage and retrieval systems | Artificial intelligence | Optical pattern recognition | Computer Science | Information Storage and Retrieval | Artificial Intelligence (incl. Robotics) | Probability and Statistics in Computer Science | Pattern RecognitionFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 025.04 Clasificación LoC:QA75.5-76.95Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA75.5 -76.95 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 374715-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA75.5 -76.95 Theory and Applications of Models of Computation | QA75.5 -76.95 The Role of Digital Libraries in a Time of Global Change | QA75.5 -76.95 Applications and Theory of Petri Nets | QA75.5 -76.95 Learning to Rank for Information Retrieval | QA75.5 -76.95 Web Services and Formal Methods | QA75.5 -76.95 Enabling Real-Time Business Intelligence | QA75.5 -76.95 Computational Intelligence Methods for Bioinformatics and Biostatistics |
1. Ranking in IR -- 2. Learning to Rank for IR -- 3. Regression/Classification: Conventional ML Approach to Learning to Rank -- 4. Ordinal Regression: A Pointwise Approach to Learning to Rank -- 5. Preference Learning: A Pairwise Approach to Learning to Rank -- 6. Listwise Ranking: A Listwise APproach to Learning to Rank -- 7. Advanced Topics -- 8. LETOR: A Benchmark Dataset for Learning to Rank -- 9. SUmmary and Outlook.
Due to the fast growth of the Web and the difficulties in finding desired information, efficient and effective information retrieval systems have become more important than ever, and the search engine has become an essential tool for many people. The ranker, a central component in every search engine, is responsible for the matching between processed queries and indexed documents. Because of its central role, great attention has been paid to the research and development of ranking technologies. In addition, ranking is also pivotal for many other information retrieval applications, such as collaborative filtering, definition ranking, question answering, multimedia retrieval, text summarization, and online advertisement. Leveraging machine learning technologies in the ranking process has led to innovative and more effective ranking models, and eventually to a completely new research area called “learning to rank”. Liu first gives a comprehensive review of the major approaches to learning to rank. For each approach he presents the basic framework, with example algorithms, and he discusses its advantages and disadvantages. He continues with some recent advances in learning to rank that cannot be simply categorized into the three major approaches – these include relational ranking, query-dependent ranking, transfer ranking, and semisupervised ranking. His presentation is completed by several examples that apply these technologies to solve real information retrieval problems, and by theoretical discussions on guarantees for ranking performance. This book is written for researchers and graduate students in both information retrieval and machine learning. They will find here the only comprehensive description of the state of the art in a field that has driven the recent advances in search engine development.
19