Vector Optimization [recurso electrónico] : Theory, Applications, and Extensions / by Johannes Jahn.

Por: Jahn, Johannes [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: XV, 481 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642170058Tema(s): Economics | Mathematical optimization | Operations research | Economics/Management Science | Operations Research/Decision Theory | Optimization | Operations Research, Mathematical ProgrammingFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 658.40301 Clasificación LoC:HD30.23Recursos en línea: Libro electrónicoTexto En: Springer eBooksResumen: This book presents fundamentals and important results of vector optimization in a general setting. The theory developed includes scalarization, existence theorems, a generalized Lagrange multiplier rule and duality results. Applications to vector approximation, cooperative game theory and multiobjective optimization are described. The theory is extended to set optimization with particular emphasis on contingent epiderivatives, subgradients and optimality conditions. Background material of convex analysis being necessary is concisely summarized at the beginning. This second edition contains new parts on the adaptive Eichfelder-Polak method, a concrete application to magnetic resonance systems in medical engineering and additional remarks on the contribution of F.Y. Edgeworth and V. Pareto. The bibliography is updated and includes more recent important publications.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos HD30.23 (Browse shelf(Abre debajo)) 1 No para préstamo 375440-2001

This book presents fundamentals and important results of vector optimization in a general setting. The theory developed includes scalarization, existence theorems, a generalized Lagrange multiplier rule and duality results. Applications to vector approximation, cooperative game theory and multiobjective optimization are described. The theory is extended to set optimization with particular emphasis on contingent epiderivatives, subgradients and optimality conditions. Background material of convex analysis being necessary is concisely summarized at the beginning. This second edition contains new parts on the adaptive Eichfelder-Polak method, a concrete application to magnetic resonance systems in medical engineering and additional remarks on the contribution of F.Y. Edgeworth and V. Pareto. The bibliography is updated and includes more recent important publications.

19

Con tecnología Koha