Modeling Multi-Level Systems [recurso electrónico] / by Octavian Iordache.

Por: Iordache, Octavian [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Understanding Complex Systems ; 70Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: XV, 232 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642179464Tema(s): Engineering | Physics | Engineering | Complexity | Nonlinear Dynamics | Computational IntelligenceFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 620 Clasificación LoC:QA76.9.M35Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction -- Methodological Resources -- Conventional PSM frames -- New PSM frames.-Mixing in chemical reactors -- Compartmental systems -- Turbulent mixing -- Entropy -- Formal concept analysis -- Existential graphs -- Evolvable designs of experiments -- Autonomous systems perspective.
En: Springer eBooksResumen: This book is devoted to modeling of multi-level complex systems, a challenging domain for engineers, researchers and entrepreneurs, confronted with the transition from learning and adaptability to evolvability and autonomy for technologies, devices and problem solving methods. Chapter 1 introduces the multi-scale and multi-level systems and highlights their presence in different domains of science and technology. Methodologies as, random systems, non-Archimedean analysis, category theory and specific techniques as model categorification and integrative closure, are presented in chapter 2. Chapters 3 and 4 describe polystochastic models, PSM, and their developments. Categorical formulation of integrative closure offers the general PSM framework which serves as a flexible guideline for a large variety of multi-level modeling problems. Focusing on chemical engineering, pharmaceutical and environmental case studies, the chapters 5 to 8 analyze mixing, turbulent dispersion and entropy production for multi-scale systems. Taking inspiration from systems sciences, chapters 9 to 11 highlight multi-level modeling potentialities in formal concept analysis, existential graphs and evolvable designs of experiments. Case studies refer to separation flow-sheets, pharmaceutical pipeline, drug design and development, reliability management systems, security and failure analysis. Perspectives and integrative points of view are discussed in chapter 12. Autonomous and viable systems, multi-agents, organic and autonomic computing, multi-level informational systems, are revealed as promising domains for future applications. Written for: engineers, researchers, entrepreneurs and students in chemical, pharmaceutical, environmental and systems sciences engineering, and for applied mathematicians.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA76.9 .M35 (Browse shelf(Abre debajo)) 1 No para préstamo 375628-2001

Introduction -- Methodological Resources -- Conventional PSM frames -- New PSM frames.-Mixing in chemical reactors -- Compartmental systems -- Turbulent mixing -- Entropy -- Formal concept analysis -- Existential graphs -- Evolvable designs of experiments -- Autonomous systems perspective.

This book is devoted to modeling of multi-level complex systems, a challenging domain for engineers, researchers and entrepreneurs, confronted with the transition from learning and adaptability to evolvability and autonomy for technologies, devices and problem solving methods. Chapter 1 introduces the multi-scale and multi-level systems and highlights their presence in different domains of science and technology. Methodologies as, random systems, non-Archimedean analysis, category theory and specific techniques as model categorification and integrative closure, are presented in chapter 2. Chapters 3 and 4 describe polystochastic models, PSM, and their developments. Categorical formulation of integrative closure offers the general PSM framework which serves as a flexible guideline for a large variety of multi-level modeling problems. Focusing on chemical engineering, pharmaceutical and environmental case studies, the chapters 5 to 8 analyze mixing, turbulent dispersion and entropy production for multi-scale systems. Taking inspiration from systems sciences, chapters 9 to 11 highlight multi-level modeling potentialities in formal concept analysis, existential graphs and evolvable designs of experiments. Case studies refer to separation flow-sheets, pharmaceutical pipeline, drug design and development, reliability management systems, security and failure analysis. Perspectives and integrative points of view are discussed in chapter 12. Autonomous and viable systems, multi-agents, organic and autonomic computing, multi-level informational systems, are revealed as promising domains for future applications. Written for: engineers, researchers, entrepreneurs and students in chemical, pharmaceutical, environmental and systems sciences engineering, and for applied mathematicians.

19

Con tecnología Koha