Geometry of Minkowski Space-Time [recurso electrónico] / by Francesco Catoni, Dino Boccaletti, Roberto Cannata, Vincenzo Catoni, Paolo Zampetti.
Tipo de material: TextoSeries SpringerBriefs in PhysicsEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: VIII, 114p. 28 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642179778Tema(s): Physics | Mathematics | Physics | Theoretical, Mathematical and Computational Physics | Applications of Mathematics | Classical and Quantum Gravitation, Relativity TheoryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 530.1 Clasificación LoC:QC19.2-20.85Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QC19.2 -20.85 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 375632-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QC19.2 -20.85 Random Matrices, Random Processes and Integrable Systems | QC19.2 -20.85 Higher Mathematics for Physics and Engineering | QC19.2 -20.85 Line Groups in Physics | QC19.2 -20.85 Geometry of Minkowski Space-Time | QC19.2 -20.85 Bifurcation and Chaos in Discontinuous and Continuous Systems | QC19.2 -20.85 Non-Equilibrium Phase Transitions | QC19.2 -20.85 Grid Generation Methods |
Introduction -- Hyperbolic Numbers -- Geometrical Representation of Hyperbolic Numbers -- Trigonometry in the Hyperbolic (Minkowski) Plane -- Equilateral Hyperbolas and Triangles in the Hyperbolic Plane -- The Motions in Minkowski Space-Time (Twin Paradox) -- Some Final Considerations.
This book provides an original introduction to the geometry of Minkowski space-time. A hundred years after the space-time formulation of special relativity by Hermann Minkowski, it is shown that the kinematical consequences of special relativity are merely a manifestation of space-time geometry. The book is written with the intention of providing students (and teachers) of the first years of University courses with a tool which is easy to be applied and allows the solution of any problem of relativistic kinematics at the same time. The book treats in a rigorous way, but using a non-sophisticated mathematics, the Kinematics of Special Relativity. As an example, the famous "Twin Paradox" is completely solved for all kinds of motions. The novelty of the presentation in this book consists in the extensive use of hyperbolic numbers, the simplest extension of complex numbers, for a complete formalization of the kinematics in the Minkowski space-time. Moreover, from this formalization the understanding of gravity comes as a manifestation of curvature of space-time, suggesting new research fields.
19