Numerical Methods for Two-phase Incompressible Flows [recurso electrónico] / by Sven Gross, Arnold Reusken.
Tipo de material: TextoSeries Springer Series in Computational Mathematics ; 40Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: XVIII, 482 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642196867Tema(s): Mathematics | Computer science -- Mathematics | Engineering mathematics | Hydraulic engineering | Mechanical engineering | Mathematics | Computational Mathematics and Numerical Analysis | Appl.Mathematics/Computational Methods of Engineering | Engineering Fluid Dynamics | Mechanical EngineeringFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 518 | 518 Clasificación LoC:QA71-90Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA71 -90 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 375909-2001 |
Introduction -- Part I One-phase incompressible flows -- Mathematical models -- Finite element discretization -- Time integration.-.
This book is the first monograph providing an introduction to and an overview of numerical methods for the simulation of two-phase incompressible flows. The Navier-Stokes equations describing the fluid dynamics are examined in combination with models for mass and surfactant transport. The book pursues a comprehensive approach: important modeling issues are treated, appropriate weak formulations are derived, level set and finite element discretization techniques are analyzed, efficient iterative solvers are investigated, implementational aspects are considered and the results of numerical experiments are presented. The book is aimed at M Sc and PhD students and other researchers in the fields of Numerical Analysis and Computational Engineering Science interested in the numerical treatment of two-phase incompressible flows.
19