On the Achievable Rate of Stationary Fading Channels [recurso electrónico] / by Meik Dörpinghaus.

Por: Dörpinghaus, Meik [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Foundations in Signal Processing, Communications and Networking ; 6Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: XIV, 310 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642197802Tema(s): Engineering | Coding theory | Computer science | Telecommunication | Engineering | Communications Engineering, Networks | Coding and Information Theory | Computational Science and Engineering | Signal, Image and Speech ProcessingFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 621.382 Clasificación LoC:TK1-9971Recursos en línea: Libro electrónicoTexto
Contenidos:
Introduction -- Discrete-Time Flat-Fading System Model -- Bounds on the Achievable Rate of a Flat-Fading Channel -- Bounds on the Achievable Rate of a Flat-Fading Channel Based on Prediction -- Pilot Based Synchronized Detection -- Iterative Code-Aided Synchronized Detection -- Joint Processing of Pilot and Data Symbols -- MIMO Flat-Fading Channels -- Frequency-Selective Channels -- Optimum Discrete Signaling -- Conclusion -- Mathematical Derivations and Proofs.
En: Springer eBooksResumen: Virtually all mobile communications systems face the problem that transmission takes place over a time-varying fading channel whose realization is unknown to the receiver. For the design of communication systems it is important to know performance limits for communication over such channels. Therefore, the present book discusses various aspects regarding the capacity/achievable data rate of stationary fading channels. In this regard, it spans a wide range from bounds on the capacity/achievable rate for such channels to a study of the achievable rate with practical receivers. It reveals in detail which portion of the mutual information between the transmitter and the receiver can be retrieved in practice by synchronized detection. In this context, the book covers: - A study of the achievable rate of stationary Rayleigh fading channels, mainly focusing on i.i.d. Gaussian input symbols, including multiple-input multiple-output and frequency-selective channels. - An examination of the achievable rate with practical systems relying on pilot symbols, including conventional receivers using synchronized detection with a solely pilot based channel estimation, enhanced receivers using code-aided channel estimation, and a comparison to the achievable rate with optimal joint processing of pilot and data symbols. - An investigation of optimal discrete input distributions, showing that periodic pilot symbols as used in practice are not capacity-achieving in general. However, they allow for receiver implementations with reasonable complexity while showing only a small decrease in performance.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos TK1 -9971 (Browse shelf(Abre debajo)) 1 No para préstamo 375936-2001

Introduction -- Discrete-Time Flat-Fading System Model -- Bounds on the Achievable Rate of a Flat-Fading Channel -- Bounds on the Achievable Rate of a Flat-Fading Channel Based on Prediction -- Pilot Based Synchronized Detection -- Iterative Code-Aided Synchronized Detection -- Joint Processing of Pilot and Data Symbols -- MIMO Flat-Fading Channels -- Frequency-Selective Channels -- Optimum Discrete Signaling -- Conclusion -- Mathematical Derivations and Proofs.

Virtually all mobile communications systems face the problem that transmission takes place over a time-varying fading channel whose realization is unknown to the receiver. For the design of communication systems it is important to know performance limits for communication over such channels. Therefore, the present book discusses various aspects regarding the capacity/achievable data rate of stationary fading channels. In this regard, it spans a wide range from bounds on the capacity/achievable rate for such channels to a study of the achievable rate with practical receivers. It reveals in detail which portion of the mutual information between the transmitter and the receiver can be retrieved in practice by synchronized detection. In this context, the book covers: - A study of the achievable rate of stationary Rayleigh fading channels, mainly focusing on i.i.d. Gaussian input symbols, including multiple-input multiple-output and frequency-selective channels. - An examination of the achievable rate with practical systems relying on pilot symbols, including conventional receivers using synchronized detection with a solely pilot based channel estimation, enhanced receivers using code-aided channel estimation, and a comparison to the achievable rate with optimal joint processing of pilot and data symbols. - An investigation of optimal discrete input distributions, showing that periodic pilot symbols as used in practice are not capacity-achieving in general. However, they allow for receiver implementations with reasonable complexity while showing only a small decrease in performance.

19

Con tecnología Koha