Statistics for High-Dimensional Data [recurso electrónico] : Methods, Theory and Applications / by Peter Bühlmann, Sara van de Geer.
Tipo de material: TextoSeries Springer Series in StatisticsEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: XVIII, 558 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642201929Tema(s): Statistics | Computer science | Mathematical statistics | Statistics | Statistical Theory and Methods | Probability and Statistics in Computer ScienceFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 519.5 Clasificación LoC:QA276-280Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA276 -280 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 376028-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA276 -280 Interactive LISREL in Practice | QA276 -280 Statistical Tools for Finance and Insurance | QA276 -280 Inverse Problems and High-Dimensional Estimation | QA276 -280 Statistics for High-Dimensional Data | QA276 -280 Permutation Testing for Isotonic Inference on Association Studies in Genetics | QA276 -280 Price Indexes in Time and Space | QA276 -280 Frontiers in Statistical Quality Control 9 |
Introduction -- Lasso for linear models -- Generalized linear models and the Lasso -- The group Lasso -- Additive models and many smooth univariate functions -- Theory for the Lasso -- Variable selection with the Lasso -- Theory for l1/l2-penalty procedures -- Non-convex loss functions and l1-regularization -- Stable solutions -- P-values for linear models and beyond -- Boosting and greedy algorithms -- Graphical modeling -- Probability and moment inequalities -- Author Index -- Index -- References -- Problems at the end of each chapter.
Modern statistics deals with large and complex data sets, and consequently with models containing a large number of parameters. This book presents a detailed account of recently developed approaches, including the Lasso and versions of it for various models, boosting methods, undirected graphical modeling, and procedures controlling false positive selections. A special characteristic of the book is that it contains comprehensive mathematical theory on high-dimensional statistics combined with methodology, algorithms and illustrations with real data examples. This in-depth approach highlights the methods’ great potential and practical applicability in a variety of settings. As such, it is a valuable resource for researchers, graduate students and experts in statistics, applied mathematics and computer science.
19