Intelligent Systems: Approximation by Artificial Neural Networks [recurso electrónico] / by George A. Anastassiou.

Por: Anastassiou, George A [author.]Colaborador(es): SpringerLink (Online service)Tipo de material: TextoTextoSeries Intelligent Systems Reference Library ; 19Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: VIII, 108 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642214318Tema(s): Engineering | Artificial intelligence | Mathematics | Engineering | Computational Intelligence | Artificial Intelligence (incl. Robotics) | Applications of MathematicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 006.3 Clasificación LoC:Q342Recursos en línea: Libro electrónicoTexto
Contenidos:
Univariate sigmoidal neural network quantitative approximation -- Univariate hyperbolic tangent neural network quantitative approximation -- Multivariate sigmoidal neural network quantitative approximation -- Multivariate hyperbolic tangent neural network quantitative approximation.
En: Springer eBooksResumen: This brief monograph is the first one to deal exclusively with the quantitative approximation by artificial neural networks to the identity-unit operator. Here we study with rates the approximation properties of the "right" sigmoidal and hyperbolic tangent artificial neural network positive linear operators. In particular we study the degree of approximation of these operators to the unit operator in the univariate and multivariate cases over bounded or unbounded domains. This is given via inequalities and with the use of modulus of continuity of the involved function or its higher order derivative. We examine the real and complex cases.  For the convenience of the reader, the chapters of this book are written in a self-contained style. This treatise relies on author's last two years of related research work. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The exposed results are expected to find applications in many areas of computer science and applied mathematics, such as neural networks, intelligent systems, complexity theory, learning theory, vision and approximation theory, etc. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science libraries.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos Q342 (Browse shelf(Abre debajo)) 1 No para préstamo 376272-2001

Univariate sigmoidal neural network quantitative approximation -- Univariate hyperbolic tangent neural network quantitative approximation -- Multivariate sigmoidal neural network quantitative approximation -- Multivariate hyperbolic tangent neural network quantitative approximation.

This brief monograph is the first one to deal exclusively with the quantitative approximation by artificial neural networks to the identity-unit operator. Here we study with rates the approximation properties of the "right" sigmoidal and hyperbolic tangent artificial neural network positive linear operators. In particular we study the degree of approximation of these operators to the unit operator in the univariate and multivariate cases over bounded or unbounded domains. This is given via inequalities and with the use of modulus of continuity of the involved function or its higher order derivative. We examine the real and complex cases.  For the convenience of the reader, the chapters of this book are written in a self-contained style. This treatise relies on author's last two years of related research work. Advanced courses and seminars can be taught out of this brief book. All necessary background and motivations are given per chapter. A related list of references is given also per chapter. The exposed results are expected to find applications in many areas of computer science and applied mathematics, such as neural networks, intelligent systems, complexity theory, learning theory, vision and approximation theory, etc. As such this monograph is suitable for researchers, graduate students, and seminars of the above subjects, also for all science libraries.

19

Con tecnología Koha