From Objects to Diagrams for Ranges of Functors [recurso electrónico] / by Pierre Gillibert, Friedrich Wehrung.

Por: Gillibert, Pierre [author.]Colaborador(es): Wehrung, Friedrich [author.] | SpringerLink (Online service)Tipo de material: TextoTextoSeries Lecture Notes in Mathematics ; 2029Editor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: X, 158 p. 19 illus. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642217746Tema(s): Mathematics | Algebra | K-theory | Logic, Symbolic and mathematical | Mathematics | Algebra | Category Theory, Homological Algebra | General Algebraic Systems | Order, Lattices, Ordered Algebraic Structures | Mathematical Logic and Foundations | K-TheoryFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 512 Clasificación LoC:QA150-272Recursos en línea: Libro electrónicoTexto
Contenidos:
1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion.
En: Springer eBooksResumen: This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.
Star ratings
    Valoración media: 0.0 (0 votos)
Existencias
Tipo de ítem Biblioteca actual Colección Signatura Copia número Estado Fecha de vencimiento Código de barras
Libro Electrónico Biblioteca Electrónica
Colección de Libros Electrónicos QA150 -272 (Browse shelf(Abre debajo)) 1 No para préstamo 376362-2001

1 Background -- 2 Boolean Algebras Scaled with Respect to a Poset -- 3 The Condensate Lifting Lemma (CLL) -- 4 Larders from First-order Structures -- 5 Congruence-Preserving Extensions -- 6 Larders from von Neumann Regular Rings -- 7 Discussion.

This work introduces tools from the field of category theory that make it possible to tackle a number of representation problems that have remained unsolvable to date (e.g. the determination of the range of a given functor). The basic idea is: if a functor lifts many objects, then it also lifts many (poset-indexed) diagrams.

19

Con tecnología Koha