Financial Derivatives Modeling [recurso electrónico] / by Christian Ekstrand.
Tipo de material: TextoEditor: Berlin, Heidelberg : Springer Berlin Heidelberg, 2011Descripción: XI, 319 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642221552Tema(s): Economics | Finance | Economics -- Statistics | Economics/Management Science | Finance/Investment/Banking | Quantitative Finance | Statistics for Business/Economics/Mathematical Finance/InsuranceFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 657.8333 | 658.152 Clasificación LoC:HG1-9999HG4501-6051HG1501-HG3550Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | HG1 -9999 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 376429-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
HG1 -9999 Supply Chain Finance Solutions | HG1 -9999 Financial Aspects in Energy | HG1 -9999 Asset Prices, Booms and Recessions | HG1 -9999 Financial Derivatives Modeling | HG1 -9999 Valuation of Network Effects in Software Markets | HG1 -9999 Resourcing Small and Medium Sized Enterprises | HG1 -9999 Risk Management in Credit Portfolios |
Derivatives Pricing Basics: Pricing by Replication -- Static Replication -- Dynamic Replication -- Derivatives Modeling in Practice -- Skew and Smile Techniques: Continuous Stochastic Processes -- Local Volatility Models -- Stochastic Volatility Models -- Lévy Models -- Exotic Derivatives: Path-Dependent Derivatives -- High-Dimensional Derivatives -- Asset Class Specific Modeling: - Equities -- Commodities -- Interest Rates -- Foreign Exchange -- Mathematical Preliminaries.
This book gives a comprehensive introduction to the modeling of financial derivatives, covering all major asset classes (equities, commodities, interest rates and foreign exchange) and stretching from Black and Scholes' lognormal modeling to current-day research on skew and smile models. The intended reader has a solid mathematical background and is a graduate/final-year undergraduate student specializing in Mathematical Finance, or works at a financial institution such as an investment bank or a hedge fund.
19