Nonlinear Dynamical Systems in Engineering [recurso electrónico] : Some Approximate Approaches / by Vasile Marinca, Nicolae Herisanu.
Tipo de material: TextoEditor: Berlin, Heidelberg : Springer Berlin Heidelberg : Imprint: Springer, 2011Descripción: XII, 396 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783642227356Tema(s): Engineering | Computer science -- Mathematics | Physics | Engineering | Complexity | Computational Mathematics and Numerical Analysis | Nonlinear DynamicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 620 Clasificación LoC:QA76.9.M35Recursos en línea: Libro electrónicoTipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | QA76.9 .M35 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 376545-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
QA76.9 .M35 Modeling Multi-Level Systems | QA76.9 .M35 Modern Mathematical Tools and Techniques in Capturing Complexity | QA76.9 .M35 Complexity Metrics in Engineering Design | QA76.9 .M35 Nonlinear Dynamical Systems in Engineering | QA76.9 .M35 Computer Algebra in Scientific Computing | QA76.9 .M35 Theoretical and Mathematical Foundations of Computer Science | QA76.9 .M35 Nonlinear Science and Complexity |
Introduction -- Perturbation method (Lindstedt-Poincaré) -- The method of harmonic balance -- The method of Krylov and Bogolyubov -- The method of multiple scales -- The optimal homotopy asymptotic method -- The optimal homotopy perturbation method -- The optimal variational iteration method -- Optimal parametric iteration method.
This book presents and extends different known methods to solve different types of strong nonlinearities encountered by engineering systems. A better knowledge of the classical methods presented in the first part lead to a better choice of the so-called “base functions”. These are absolutely necessary to obtain the auxiliary functions involved in the optimal approaches which are presented in the second part. Every chapter introduces a distinct approximate method applicable to nonlinear dynamical systems. Each approximate analytical approach is accompanied by representative examples related to nonlinear dynamical systems from various fields of engineering.
19