Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances [recurso electrónico] / edited by Herbert Steinrück.
Tipo de material: TextoSeries CISM Courses and Lectures ; 523Editor: Vienna : Springer Vienna, 2010Descripción: VII, 420 p. online resourceTipo de contenido: text Tipo de medio: computer Tipo de portador: online resourceISBN: 9783709104088Tema(s): Engineering | Differential equations, partial | Mechanics, applied | Engineering | Theoretical and Applied Mechanics | Partial Differential Equations | Fluid- and AerodynamicsFormatos físicos adicionales: Printed edition:: Sin títuloClasificación CDD: 620.1 Clasificación LoC:TA349-359Recursos en línea: Libro electrónico En: Springer eBooksResumen: A survey of asymptotic methods in fluid mechanics and applications is given including high Reynolds number flows (interacting boundary layers, marginal separation, turbulence asymptotics) and low Reynolds number flows as an example of hybrid methods, waves as an example of exponential asymptotics and multiple scales methods in meteorology.Tipo de ítem | Biblioteca actual | Colección | Signatura | Copia número | Estado | Fecha de vencimiento | Código de barras |
---|---|---|---|---|---|---|---|
Libro Electrónico | Biblioteca Electrónica | Colección de Libros Electrónicos | TA349 -359 (Browse shelf(Abre debajo)) | 1 | No para préstamo | 376982-2001 |
Navegando Biblioteca Electrónica Estantes, Código de colección: Colección de Libros Electrónicos Cerrar el navegador de estanterías (Oculta el navegador de estanterías)
TA349 -359 Dimensional Analysis | TA349 -359 Trends in Computational Contact Mechanics | TA349 -359 Poly-, Quasi- and Rank-One Convexity in Applied Mechanics | TA349 -359 Asymptotic Methods in Fluid Mechanics: Survey and Recent Advances | TA349 -359 Error Analysis with Applications in Engineering | TA349 -359 Plates and FEM | TA349 -359 Recent Advances in Mechanics |
A survey of asymptotic methods in fluid mechanics and applications is given including high Reynolds number flows (interacting boundary layers, marginal separation, turbulence asymptotics) and low Reynolds number flows as an example of hybrid methods, waves as an example of exponential asymptotics and multiple scales methods in meteorology.
19